• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70424

    Título
    Artificial neural networks for short-term load forecasting in microgrids environment
    Autor
    Hernández Callejo, LuisAutoridad UVA Orcid
    Baladrón García, CarlosAutoridad UVA
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Lloret, Jaime
    Año del Documento
    2014
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Energy, October 2014, vol. 75, p. 252-264.
    Zusammenfassung
    The adaptation of energy production to demand has been traditionally very important for utilities in order to optimize resource consumption. This is especially true also in microgrids where many intelligent elements have to adapt their behaviour depending on the future generation and consumption conditions. However, traditional forecasting has been performed only for extremely large areas, such as nations and regions. This work aims at presenting a solution for short-term load forecasting (STLF) in microgrids, based on a three-stage architecture which starts with pattern recognition by a self-organizing map (SOM), a clustering of the previous partition via k-means algorithm, and finally demand forecasting for each cluster with a multilayer perceptron. Model validation was performed with data from a microgrid-sized environment provided by the Spanish company Iberdrola.
    Materias Unesco
    3306 Ingeniería y Tecnología Eléctricas
    Palabras Clave
    Artificial neural network
    Short-term load forecasting
    Microgrid
    Pattern recognition
    Self-organizing map
    k-Means algorithm
    ISSN
    0360-5442
    Revisión por pares
    SI
    DOI
    10.1016/j.energy.2014.07.065
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0360544214008871?via%3Dihub#ack0010
    Propietario de los Derechos
    © Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70424
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Artificial_neural_networks_Energy.pdf
    Tamaño:
    1.811Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10