Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70903
Título
Complexity of Puiseux solutions of differential and q-difference equations of order and degree one
Año del Documento
2024
Editorial
Universitat Autonoma de Barcelona
Descripción
Producción Científica
Documento Fuente
Publicacions Matèmatiques, 2024, vol. 68, n. 2. p. 331-358.
Resumen
We relate the complexity of both differential and q-difference equations of order one and
degree one and their solutions. Our point of view is to show that if the solutions are complicated, the
initial equation is complicated too. In this spirit, we bound from below an invariant of the differential
or q-difference equation, the height of its Newton polygon, in terms of the characteristic factors of a
solution. The differential and the q-difference cases are treated in a unified way.
Materias (normalizadas)
Matemáticas - Investigación
Materias Unesco
1202 Análisis y Análisis Funcional
1201.04 Álgebra Diferencial
1204 Geometría
Palabras Clave
power series solution
holomorphic foliation
q-difference equation
Newton–Puiseux polygon
ISSN
02141493
Revisión por pares
SI
Patrocinador
MICIU/AEI /10.13039/501100011033 y por FEDER, UE. Proyecto: PID2022-139631NB-I00
FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Processo SEI 260003/003548/2022
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico-CNPq, Proc. 308838/2019-0
FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Processo SEI 260003/003548/2022
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico-CNPq, Proc. 308838/2019-0
Version del Editor
Propietario de los Derechos
©2024 by the author(s) under Creative Commons Attribution 4.0 License (CC BY 4.0).
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
490.3Kb
Formato:
Adobe PDF
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional