Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Cagigal, Víctor 
dc.contributor.editorUniversidad de Valladolid. Grupo de Ingeniería Biomédicaes
dc.date.accessioned2024-10-25T13:43:16Z
dc.date.available2024-10-25T13:43:16Z
dc.date.created2022-09-26
dc.date.issued2024-10-25
dc.identifier.citationMartínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70945
dc.description.abstractCode-modulated visual evoked potentials (c-VEPs) have marked a milestone in the scientific literature due to their ability to achieve reliable, high-speed brain–computer interfaces (BCIs) for communication and control. Generally, these expert systems rely on encoding each command with shifted versions of binary pseudorandom sequences, i.e., flashing black and white targets according to the shifted code. Despite the excellent results in terms of accuracy and selection time, these high-contrast stimuli cause eyestrain for some users. For this reason, we propose the use of non-binary p-ary m-sequences, whose levels are encoded with different shades of gray, as a more pleasant alternative than traditional binary codes. In this dataset, a total of 16 healthy participants engaged in BCI spelling tasks using five different p-ary m-sequences: binary GF(2^6) with a base of 2, GF(3^5) with a base of 3, GF(5^3) with a base of 5, GF(7^2) with a base of 7, and GF(11^2) with a base of 11. Each participant completed a single session that included a calibration phase consisting of 300 cycles (repetitions of the p-ary m-sequence), followed by an online spelling task of 32 trials (with 10 cycles per trial) for each condition. Online selections were made using a 4x4 command matrix (chance level of 6.25%), consisting of alphabetic characters from A to P. In addition, qualitative measures regarding visual fatigue and satisfaction were collected.es
dc.description.sponsorshipGrupo de Ingeniería Biomédicaes
dc.description.sponsorshipDepartamento de Informáticaes
dc.description.sponsorshipDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemáticaes
dc.format.mimetypeapplication/zipes
dc.language.isospaes
dc.relation.isreferencedbyMartínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815. DOI: https://doi.org/10.1016/j.eswa.2023.120815es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectNeurotechnologyes
dc.subjectBiomedical Engineeringes
dc.subjectArtificial intelligencees
dc.subjectComputer sciencees
dc.subjectNeurosciencees
dc.subject.classificationNon-binary codeses
dc.subject.classificationVisual fatiguees
dc.subject.classificationCode-modulated visual evoked potential (c-VEP)es
dc.subject.classificationBrain–computer interface (BCI)es
dc.subject.classificationElectroencephalography (EEG)es
dc.titleDataset: Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPses
dc.typedatasetes
dc.identifier.doi10.35376/10324/70945
dc.description.projectTED2021-129915B-I00, RTC2019-007350-1, and PID2020-115468RB-I00es
dc.description.projectCIBER-BBNes
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2490 Neurocienciases
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem