Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70967
Título
Predicción de concentraciones de contaminantes atmosféricos mediante modelos estadísticos
Autor
Director o Tutor
Año del Documento
2023
Titulación
Grado en Física
Resumen
Este trabajo aborda el análisis estadístico de series temporales de la concentración de contaminantes atmosféricos en tres regiones diferentes del núcleo urbano de Londres. En particular se utilizan datos del dióxido de carbono (NO2), el ozono (O3) y las partículas en suspensión PM10 y PM2,5 entre los años 2007 y 2011. Se emplea el algoritmo Prophet de Facebook en R para obtener modelos estadísticos ajustados a los
datos proporcionados y realizar predicciones basadas en estos. Se observa una fuerte correlación
entre las regiones y se identifican patrones estacionales en los contaminantes. El ozono muestra comportamientos inversos. Se evalúan dos acercamientos con el algoritmo Prophet, destacando la importancia del número de días utilizados para ajustar el modelo. Las conclusiones incluyen tendencias estacionales, ciclos anuales y semanales, y el poco número de parámetros que se necesitan para obtener predicciones precisas. This study addresses the statistical analysis of time series data on the concentration of atmospheric pollutants in three different regions within the urban core of London. Specifically, data on nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM10 and PM2,5) from the years 2007 to 2011 are utilized. The Facebook Prophet algorithm in R is employed to develop statistically adjusted models based on the provided data and to make predictions accordingly. A strong correlation is observed among the regions, and seasonal patterns in pollutants are identified. Ozone exhibits inverse behaviors. Two approaches are evaluated with the Prophet algorithm, emphasizing the significance of the number of days used for model adjustment. Conclusions include
seasonal trends, annual and weekly cycles, and the low number of parameters needed for achieving accurate predictions.
Palabras Clave
Contaminantes atmosféricos
Prophet
Modelos estadísticos
Departamento
Departamento de Física Aplicada
Idioma
spa
Derechos
openAccess
Aparece en las colecciones
- Trabajos Fin de Grado UVa [30023]
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional