Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/7156
Título
The role of NADPH oxidase in carotid body arterial chemoreceptors
Autor
Año del Documento
2007
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Respiratory Physiology & Neurobiology 157 (2007) 45–54
Resumen
O2-sensing in the carotid body occurs in neuroectoderm-derived type I glomus cells where hypoxia elicits a complex chemotransduction cascade
involving membrane depolarization, Ca2+ entry and the release of excitatory neurotransmitters. Efforts to understand the exquisite O2-sensitivity of
these cells currently focus on the coupling between local PO2 and the open-closed state of K+-channels. Amongst multiple competing hypotheses
is the notion that K+-channel activity is mediated by a phagocytic-like multisubunit enzyme, NADPH oxidase, which produces reactive oxygen
species (ROS) in proportion to the prevailing PO2. In O2-sensitive cells of lung neuroepithelial bodies (NEB), multiple studies confirm that ROS
levels decrease in hypoxia, and that EM and K+-channel activity are indeed controlled by ROS produced by NADPH oxidase. However, recent
studies in our laboratories suggest that ROS generated by a non-phagocyte isoform of the oxidase are important contributors to chemotransduction,
but that their role in type I cells differs fundamentally from the mechanism utilized by NEB chemoreceptors. Data indicate that in response to
hypoxia, NADPH oxidase activity is increased in type I cells, and further, that increased ROS levels generated in response to low-O2 facilitate cell
repolarization via specific subsets of K+-channels.
Materias (normalizadas)
Neurofisiologia
ISSN
1569-9048
Revisión por pares
SI
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International