Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Velasco, Sergio 
dc.contributor.authorMarcos Martínez, Diego 
dc.contributor.authorSantaMaría Vazquez, Eduardo 
dc.contributor.authorMartínez Cagigal, Víctor 
dc.contributor.authorMoreno Calderón, Selene
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2024-12-19T13:32:26Z
dc.date.available2024-12-19T13:32:26Z
dc.date.issued2024
dc.identifier.citationComputer Methods and Programs in Biomedicine, 2024, vol. 246, 108048es
dc.identifier.issn0169-2607es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72899
dc.descriptionProducción Científicaes
dc.description.abstractBackground and objective. Motor imagery (MI) based brain-computer interfaces (BCIs) are widely used in rehabilitation due to the close relationship that exists between MI and motor execution (ME). However, the underlying brain mechanisms of MI remain not well understood. Most MI-BCIs use the sensorimotor rhythms elicited in the primary motor cortex (M1) and somatosensory cortex (S1), which consist of an event-related desynchronization followed by an event-related synchronization. Consequently, this has resulted in systems that only record signals around M1 and S1. However, MI could involve a more complex network including sensory, association, and motor areas. In this study, we hypothesize that the superior accuracies achieved by new deep learning (DL) models applied to MI decoding rely on focusing on a broader MI activation of the brain. Parallel to the success of DL, the field of explainable artificial intelligence (XAI) has seen continuous development to provide explanations for DL networks success. The goal of this study is to use XAI in combination with DL to extract information about MI brain activation patterns from non-invasive electroencephalography (EEG) signals. Methods. We applied an adaptation of Shapley additive explanations (SHAP) to EEGSym, a state-of-the-art DL network with exceptional transfer learning capabilities for inter-subject MI classification. We obtained the SHAP values from two public databases comprising 171 users generating left and right hand MI instances with and without real-time feedback. Results. We found that EEGSym based most of its prediction on the signal of the frontal electrodes, i.e. F7 and F8, and on the first 1500 ms of the analyzed imagination period. We also found that MI involves a broad network not only based on M1 and S1, but also on the prefrontal cortex (PFC) and the posterior parietal cortex (PPC). We further applied this knowledge to select a 8-electrode configuration that reached inter-subject accuracies of 86.5% ± 10.6% on the Physionet dataset and 88.7% ± 7.0% on the Carnegie Mellon University's dataset. Conclusion. Our results demonstrate the potential of combining DL and SHAP-based XAI to unravel the brain network involved in producing MI. Furthermore, SHAP values can optimize the requirements for out-of-laboratory BCI applications involving real users.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.classificationBrain-computer interface (BCI)es
dc.subject.classificationMotor imagery (MI)es
dc.subject.classificationExplainable artificial intelligence (XAI)es
dc.subject.classificationShapley additive explanations (SHAP)es
dc.subject.classificationDeep learning (DL)es
dc.subject.classificationSensorimotor rhythms (SMR)es
dc.titleUnraveling motor imagery brain patterns using explainable artificial intelligence based on Shapley valueses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1016/j.cmpb.2024.108048es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169260724000440es
dc.identifier.publicationfirstpage108048es
dc.identifier.publicationtitleComputer Methods and Programs in Biomedicinees
dc.identifier.publicationvolume246es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación/FEDER (PDC2021-120775-I00, TED2021-129915B-I00, RTC2019-007350-1, PID2020-115468RB-I00)es
dc.description.projectComisión Europea/FEDER (EUROAGE+)es
dc.description.projectInstituto de Salud Carlos III/FEDER (CIBER-BBN)es
dc.description.projectJunta de Castilla y León-Consejería de Educaciónes
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem