• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72899

    Título
    Unraveling motor imagery brain patterns using explainable artificial intelligence based on Shapley values
    Autor
    Pérez Velasco, SergioAutoridad UVA
    Marcos Martínez, DiegoAutoridad UVA
    SantaMaría Vazquez, EduardoAutoridad UVA
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    Moreno Calderón, Selene
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Methods and Programs in Biomedicine, abril 2024, vol. 246, 108048
    Resumen
    Background and objective. Motor imagery (MI) based brain-computer interfaces (BCIs) are widely used in rehabilitation due to the close relationship that exists between MI and motor execution (ME). However, the underlying brain mechanisms of MI remain not well understood. Most MI-BCIs use the sensorimotor rhythms elicited in the primary motor cortex (M1) and somatosensory cortex (S1), which consist of an event-related desynchronization followed by an event-related synchronization. Consequently, this has resulted in systems that only record signals around M1 and S1. However, MI could involve a more complex network including sensory, association, and motor areas. In this study, we hypothesize that the superior accuracies achieved by new deep learning (DL) models applied to MI decoding rely on focusing on a broader MI activation of the brain. Parallel to the success of DL, the field of explainable artificial intelligence (XAI) has seen continuous development to provide explanations for DL networks success. The goal of this study is to use XAI in combination with DL to extract information about MI brain activation patterns from non-invasive electroencephalography (EEG) signals. Methods. We applied an adaptation of Shapley additive explanations (SHAP) to EEGSym, a state-of-the-art DL network with exceptional transfer learning capabilities for inter-subject MI classification. We obtained the SHAP values from two public databases comprising 171 users generating left and right hand MI instances with and without real-time feedback. Results. We found that EEGSym based most of its prediction on the signal of the frontal electrodes, i.e. F7 and F8, and on the first 1500 ms of the analyzed imagination period. We also found that MI involves a broad network not only based on M1 and S1, but also on the prefrontal cortex (PFC) and the posterior parietal cortex (PPC). We further applied this knowledge to select a 8-electrode configuration that reached inter-subject accuracies of 86.5% ± 10.6% on the Physionet dataset and 88.7% ± 7.0% on the Carnegie Mellon University's dataset. Conclusion. Our results demonstrate the potential of combining DL and SHAP-based XAI to unravel the brain network involved in producing MI. Furthermore, SHAP values can optimize the requirements for out-of-laboratory BCI applications involving real users.
    Materias Unesco
    3314 Tecnología Médica
    Palabras Clave
    Brain-computer interface (BCI)
    Motor imagery (MI)
    Explainable artificial intelligence (XAI)
    Shapley additive explanations (SHAP)
    Deep learning (DL)
    Sensorimotor rhythms (SMR)
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2024.108048
    Patrocinador
    Ministerio de Ciencia e Innovación/FEDER (PDC2021-120775-I00, TED2021-129915B-I00, RTC2019-007350-1, PID2020-115468RB-I00)
    Comisión Europea/FEDER (EUROAGE+)
    Instituto de Salud Carlos III/FEDER (CIBER-BBN)
    Junta de Castilla y León-Consejería de Educación
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169260724000440
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72899
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    cmpb246_unraveling-motor-imagery-brain-patterns-using-explainable-ai-based-shapley-values.pdf
    Tamaño:
    1.257Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución-NoComercial 4.0 InternacionalLa licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10