Mostrar el registro sencillo del ítem
dc.contributor.author | Amado Caballero, Patricia | |
dc.contributor.author | Garmendia-Leiza, J.R. | |
dc.contributor.author | Aguilar-García, M.D. | |
dc.contributor.author | Martínez-Fernández-de-Septiem, C. | |
dc.contributor.author | San José Revuelta, Luis Miguel | |
dc.contributor.author | García-Ruano, A. | |
dc.contributor.author | Alberola López, Carlos | |
dc.contributor.author | Casaseca de la Higuera, Juan Pablo | |
dc.date.accessioned | 2024-12-19T15:27:33Z | |
dc.date.available | 2024-12-19T15:27:33Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, USA, July 15-19, 2024. | es |
dc.identifier.isbn | 979-8-3503-7149-9 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/72906 | |
dc.description | Producción Científica | es |
dc.description.abstract | This study explores the feasibility of employing eXplainable Artificial Intelligence XAI methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of respiratory disease, was monitored for 24 hours using a smartphone. The audio signals underwent frequency domain transformation to yield 1-second spectrograms, subsequently processed by a CNN to detect cough events. Quantitative analysis of spectrogram regions relevant for cough detection highlighted by occlusion maps, revealed significant differences between patient groups. Notably, distinctions were observed between the Chronic Obstructive Pulmonary Disease (COPD) patient group and groups with other respiratory pathologies, both chronic and non-chronic. In conclusion, interpretability analysis methods applied to neural networks offer insights into cough-related distinctions among patients with varying respiratory conditions. | es |
dc.format.extent | 4 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE, Institute of Electrical and Electronics Engineers | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Detección | es |
dc.subject | CAD | es |
dc.subject | Procesado de señal | es |
dc.subject | Machine learning | es |
dc.subject | Deep learning | es |
dc.subject.classification | Respiratory diseases | es |
dc.subject.classification | cough | es |
dc.subject.classification | audio analysis | es |
dc.subject.classification | CNN | es |
dc.subject.classification | XAI | es |
dc.subject.classification | occlusion maps | es |
dc.title | Audio Cough Analysis by Parametric Modelling of Weighted Spectrograms to Interpret the Output of Convolutional Neural Networks | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.identifier.doi | 10.1109/EMBC53108.2024.10781781 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/10781781 | es |
dc.title.event | 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2024) | es |
dc.description.project | This work is part of the project TED2021-131536B-I00, funded by Spanish MCIN/AEI/10.13039/501100011033 and EU’s “NextGenerationEU”/PRTR | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |
dc.subject.unesco | 3306 Ingeniería y Tecnología Eléctricas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional