Mostrar el registro sencillo del ítem

dc.contributor.authorAmado Caballero, Patricia
dc.contributor.authorGarmendia-Leiza, J.R.
dc.contributor.authorAguilar-García, M.D.
dc.contributor.authorMartínez-Fernández-de-Septiem, C.
dc.contributor.authorSan José Revuelta, Luis Miguel 
dc.contributor.authorGarcía-Ruano, A.
dc.contributor.authorAlberola López, Carlos 
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.date.accessioned2024-12-19T15:27:33Z
dc.date.available2024-12-19T15:27:33Z
dc.date.issued2024
dc.identifier.citation46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, USA, July 15-19, 2024.es
dc.identifier.isbn979-8-3503-7149-9es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72906
dc.descriptionProducción Científicaes
dc.description.abstractThis study explores the feasibility of employing eXplainable Artificial Intelligence XAI methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of respiratory disease, was monitored for 24 hours using a smartphone. The audio signals underwent frequency domain transformation to yield 1-second spectrograms, subsequently processed by a CNN to detect cough events. Quantitative analysis of spectrogram regions relevant for cough detection highlighted by occlusion maps, revealed significant differences between patient groups. Notably, distinctions were observed between the Chronic Obstructive Pulmonary Disease (COPD) patient group and groups with other respiratory pathologies, both chronic and non-chronic. In conclusion, interpretability analysis methods applied to neural networks offer insights into cough-related distinctions among patients with varying respiratory conditions.es
dc.format.extent4 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE, Institute of Electrical and Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDetecciónes
dc.subjectCADes
dc.subjectProcesado de señales
dc.subjectMachine learninges
dc.subjectDeep learninges
dc.subject.classificationRespiratory diseaseses
dc.subject.classificationcoughes
dc.subject.classificationaudio analysises
dc.subject.classificationCNNes
dc.subject.classificationXAIes
dc.subject.classificationocclusion mapses
dc.titleAudio Cough Analysis by Parametric Modelling of Weighted Spectrograms to Interpret the Output of Convolutional Neural Networkses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/EMBC53108.2024.10781781es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10781781es
dc.title.event46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2024)es
dc.description.projectThis work is part of the project TED2021-131536B-I00, funded by Spanish MCIN/AEI/10.13039/501100011033 and EU’s “NextGenerationEU”/PRTRes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem