• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72906

    Título
    Audio cough analysis by parametric modelling of weighted spectrograms to interpret the output of convolutional neural networks
    Autor
    Amado Caballero, PatriciaAutoridad UVA
    Garmendia Leiza, José Ramón
    Aguilar García, M. D.
    Martínez Fernández de Septiem, C.
    San José Revuelta, Luis MiguelAutoridad UVA Orcid
    García Ruano, A.
    Alberola López, CarlosAutoridad UVA Orcid
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Congreso
    46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2024)
    Año del Documento
    2024
    Editorial
    IEEE, Institute of Electrical and Electronics Engineers
    Descripción Física
    4 p.
    Descripción
    Producción Científica
    Documento Fuente
    46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, USA, July 15-19, 2024.
    Resumen
    This study explores the feasibility of employing eXplainable Artificial Intelligence XAI methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of respiratory disease, was monitored for 24 hours using a smartphone. The audio signals underwent frequency domain transformation to yield 1-second spectrograms, subsequently processed by a CNN to detect cough events. Quantitative analysis of spectrogram regions relevant for cough detection highlighted by occlusion maps, revealed significant differences between patient groups. Notably, distinctions were observed between the Chronic Obstructive Pulmonary Disease (COPD) patient group and groups with other respiratory pathologies, both chronic and non-chronic. In conclusion, interpretability analysis methods applied to neural networks offer insights into cough-related distinctions among patients with varying respiratory conditions.
    Materias (normalizadas)
    Detección
    CAD
    Procesado de señal
    Machine learning
    Deep learning
    Materias Unesco
    3306 Ingeniería y Tecnología Eléctricas
    Palabras Clave
    Respiratory diseases
    cough
    audio analysis
    CNN
    XAI
    occlusion maps
    ISBN
    979-8-3503-7149-9
    DOI
    10.1109/EMBC53108.2024.10781781
    Patrocinador
    This work is part of the project TED2021-131536B-I00, funded by Spanish MCIN/AEI/10.13039/501100011033 and EU’s “NextGenerationEU”/PRTR
    Version del Editor
    https://ieeexplore.ieee.org/document/10781781
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72906
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Postprint_EMBC_2024.pdf
    Tamaño:
    692.1Kb
    Formato:
    Adobe PDF
    Descripción:
    Postprint EMBC 2024
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10