Show simple item record

dc.contributor.authorVillaizán Vallelado, Mario 
dc.contributor.authorSalvatori, Matteo
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier 
dc.date.accessioned2024-12-20T09:06:26Z
dc.date.available2024-12-20T09:06:26Z
dc.date.issued2024
dc.identifier.citationNeural Networks, mayo 2024, vol. 173, 106180es
dc.identifier.issn0893-6080es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72938
dc.descriptionProducción Científicaes
dc.description.abstractAll industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available in so called tabular form, where each record is composed of a number of heterogeneous continuous and categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for AI in fields related to human skills like natural language processing, but its applicability to tabular data has been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically Interaction Network (IN), for contextual embedding and modeling interactions among tabular features. Its results outperform those of a recently published survey with DL benchmark based on seven public datasets, also achieving competitive results when compared to boosted-tree solutions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationDeep Learninges
dc.subject.classificationGraph Neural Networkes
dc.subject.classificationInteraction Networkes
dc.subject.classificationContextual embeddinges
dc.subject.classificationTabular dataes
dc.subject.classificationArtificial Intelligencees
dc.titleGraph Neural Network contextual embedding for Deep Learning on tabular dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Authorses
dc.identifier.doi10.1016/j.neunet.2024.106180es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0893608024001047es
dc.identifier.publicationfirstpage106180es
dc.identifier.publicationtitleNeural Networkses
dc.identifier.publicationvolume173es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (PID2021-122210OB-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadores
dc.subject.unesco1203.04 Inteligencia Artificial


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record