dc.contributor.author | Villaizán Vallelado, Mario | |
dc.contributor.author | Salvatori, Matteo | |
dc.contributor.author | Carro Martínez, Belén | |
dc.contributor.author | Sánchez Esguevillas, Antonio Javier | |
dc.date.accessioned | 2024-12-20T09:06:26Z | |
dc.date.available | 2024-12-20T09:06:26Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Neural Networks, mayo 2024, vol. 173, 106180 | es |
dc.identifier.issn | 0893-6080 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/72938 | |
dc.description | Producción Científica | es |
dc.description.abstract | All industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available in so called tabular form, where each record is composed of a number of heterogeneous continuous and categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for AI in fields related to human skills like natural language processing, but its applicability to tabular data has been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically Interaction Network (IN), for contextual embedding and modeling interactions among tabular features. Its results outperform those of a recently published survey with DL benchmark based on seven public datasets, also achieving competitive results when compared to boosted-tree solutions. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Deep Learning | es |
dc.subject.classification | Graph Neural Network | es |
dc.subject.classification | Interaction Network | es |
dc.subject.classification | Contextual embedding | es |
dc.subject.classification | Tabular data | es |
dc.subject.classification | Artificial Intelligence | es |
dc.title | Graph Neural Network contextual embedding for Deep Learning on tabular data | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Authors | es |
dc.identifier.doi | 10.1016/j.neunet.2024.106180 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0893608024001047 | es |
dc.identifier.publicationfirstpage | 106180 | es |
dc.identifier.publicationtitle | Neural Networks | es |
dc.identifier.publicationvolume | 173 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación (PID2021-122210OB-I00) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |