Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72938
Título
Graph Neural Network contextual embedding for Deep Learning on tabular data
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Neural Networks, 2024, vol. 173, 106180
Resumen
All industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available in so called tabular form, where each record is composed of a number of heterogeneous continuous and categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for AI in fields related to human skills like natural language processing, but its applicability to tabular data has been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically Interaction Network (IN), for contextual embedding and modeling interactions among tabular features. Its results outperform those of a recently published survey with DL benchmark based on seven public datasets, also achieving competitive results when compared to boosted-tree solutions.
Palabras Clave
Deep Learning
Graph Neural Network
Interaction Network
Contextual embedding
Tabular data
Artificial Intelligence
ISSN
0893-6080
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (PID2021-122210OB-I00)
Version del Editor
Propietario de los Derechos
© 2024 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
2.081Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional