Mostrar el registro sencillo del ítem
dc.contributor.author | Dadashzadeh, Mojtaba | |
dc.contributor.author | Abbaspour Gilandeh, Yousef | |
dc.contributor.author | Mesri Gundoshmian, Tarahom | |
dc.contributor.author | Sabzi, Sajad | |
dc.contributor.author | Arribas Sánchez, Juan Ignacio | |
dc.date.accessioned | 2025-01-08T08:33:33Z | |
dc.date.available | 2025-01-08T08:33:33Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Measurement, September 2024, vol. 237, 115072 | es |
dc.identifier.issn | 0263-2241 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/73110 | |
dc.description | Producción Científica | es |
dc.description.abstract | A site-specific weed detection and classification system was implemented with a stereoscopic video camera to reduce the adverse effects of chemical herbicides in rice field. A computer vision and meta-heuristic hybrid NN-ICA classifier were used to accurately discriminate between two weed varieties and rice plants, under either natural light (NLC) or controlled light conditions (CLC). Preprocessing, segmentation, and matching procedures were performed on images coming from either right or left camera channels. Most discriminant features were selected from average, either arithmetic or geometric, images using a NN-PSO algorithm. Accuracy classification results with the stereo computer vision system under NLC were 85.71 % for the arithmetic mean (AM) and 85.63 % for the geometric mean (GM), test set. At the same time, accuracy classification results of the computer vision system under CLC reached 96.95 % for the AM case and 94.74 % for the GM case, being consistently higher than those under NLC. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Image processing | es |
dc.subject.classification | Meta-heuristic algorithms neural network (NN) | es |
dc.subject.classification | Optimization | es |
dc.subject.classification | Stereo vision | es |
dc.title | A stereoscopic video computer vision system for weed discrimination in rice field under both natural and controlled light conditions by machine learning | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1016/j.measurement.2024.115072 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0263224124009576 | es |
dc.identifier.publicationfirstpage | 115072 | es |
dc.identifier.publicationtitle | Measurement | es |
dc.identifier.publicationvolume | 237 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades (PID2021-122210OB-I00) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional