Mostrar el registro sencillo del ítem

dc.contributor.authorDadashzadeh, Mojtaba
dc.contributor.authorAbbaspour Gilandeh, Yousef
dc.contributor.authorMesri Gundoshmian, Tarahom
dc.contributor.authorSabzi, Sajad
dc.contributor.authorArribas Sánchez, Juan Ignacio 
dc.date.accessioned2025-01-08T08:33:33Z
dc.date.available2025-01-08T08:33:33Z
dc.date.issued2024
dc.identifier.citationMeasurement, September 2024, vol. 237, 115072es
dc.identifier.issn0263-2241es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/73110
dc.descriptionProducción Científicaes
dc.description.abstractA site-specific weed detection and classification system was implemented with a stereoscopic video camera to reduce the adverse effects of chemical herbicides in rice field. A computer vision and meta-heuristic hybrid NN-ICA classifier were used to accurately discriminate between two weed varieties and rice plants, under either natural light (NLC) or controlled light conditions (CLC). Preprocessing, segmentation, and matching procedures were performed on images coming from either right or left camera channels. Most discriminant features were selected from average, either arithmetic or geometric, images using a NN-PSO algorithm. Accuracy classification results with the stereo computer vision system under NLC were 85.71 % for the arithmetic mean (AM) and 85.63 % for the geometric mean (GM), test set. At the same time, accuracy classification results of the computer vision system under CLC reached 96.95 % for the AM case and 94.74 % for the GM case, being consistently higher than those under NLC.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationImage processinges
dc.subject.classificationMeta-heuristic algorithms neural network (NN)es
dc.subject.classificationOptimizationes
dc.subject.classificationStereo visiones
dc.titleA stereoscopic video computer vision system for weed discrimination in rice field under both natural and controlled light conditions by machine learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1016/j.measurement.2024.115072es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0263224124009576es
dc.identifier.publicationfirstpage115072es
dc.identifier.publicationtitleMeasurementes
dc.identifier.publicationvolume237es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (PID2021-122210OB-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem