• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73110

    Título
    A stereoscopic video computer vision system for weed discrimination in rice field under both natural and controlled light conditions by machine learning
    Autor
    Dadashzadeh, Mojtaba
    Abbaspour Gilandeh, Yousef
    Mesri Gundoshmian, Tarahom
    Sabzi, Sajad
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Measurement, September 2024, vol. 237, 115072
    Resumen
    A site-specific weed detection and classification system was implemented with a stereoscopic video camera to reduce the adverse effects of chemical herbicides in rice field. A computer vision and meta-heuristic hybrid NN-ICA classifier were used to accurately discriminate between two weed varieties and rice plants, under either natural light (NLC) or controlled light conditions (CLC). Preprocessing, segmentation, and matching procedures were performed on images coming from either right or left camera channels. Most discriminant features were selected from average, either arithmetic or geometric, images using a NN-PSO algorithm. Accuracy classification results with the stereo computer vision system under NLC were 85.71 % for the arithmetic mean (AM) and 85.63 % for the geometric mean (GM), test set. At the same time, accuracy classification results of the computer vision system under CLC reached 96.95 % for the AM case and 94.74 % for the GM case, being consistently higher than those under NLC.
    Palabras Clave
    Image processing
    Meta-heuristic algorithms neural network (NN)
    Optimization
    Stereo vision
    ISSN
    0263-2241
    Revisión por pares
    SI
    DOI
    10.1016/j.measurement.2024.115072
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (PID2021-122210OB-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0263224124009576
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73110
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    stereoscopic-video-computer-vision-system-weed-discrimination.pdf
    Tamaño:
    13.54Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10