Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73165
Título
Similarity-based decomposition algorithm for two-stage stochastic scheduling
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Computers & Industrial Engineering, agosto 2024, vol. 194, 110393
Zusammenfassung
This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the original problem becomes block-separable on a scenario basis. Then, a term for maximizing the Similarity Index is included in all the sub-problems objective functions. Such sub-problems are solved iteratively in parallel so that their solutions are used to update the weighting parameter for maximizing the Similarity Index. The algorithm obtains a feasible solution when full similarity among scenario first stages is reached, that is, when the incumbent solution is non-anticipative. The proposal is tested in four instances of different sizes of an industrial-like scheduling problem. Comparison results show that the Similarity Index Decomposition provides significant speed-ups compared with the monolithic problem formulation, and provides simpler tuning and improved convergence over the Progressive Hedging Algorithm.
Palabras Clave
Production planning
Mathematical programming
Uncertainty
Progressive hedging
Mixed-integer optimization
ISSN
0360-8352
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (PID2021-123654OB-C31, PID2021-123654OB-C32, PID2020-116585GB-I00)
Universidad de Valladolid y Banco Santander (contrato predoctoral UVa 2020)
Universidad de Valladolid y Banco Santander (contrato predoctoral UVa 2020)
Version del Editor
Propietario de los Derechos
© 2024 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional