• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74149

    Título
    Casual Learn: A linked data-based mobile application for learning about local Cultural Heritage
    Autor
    Ruiz Calleja, AdolfoAutoridad UVA
    García Zarza, PabloAutoridad UVA Orcid
    Vega Gorgojo, GuillermoAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Serrano Iglesias, SergioAutoridad UVA
    Martínez Monés, AlejandraAutoridad UVA
    Año del Documento
    2022
    Editorial
    SAGE
    Descripción
    Producción Científica
    Documento Fuente
    Semantic Web, Enero 2022, vol. 14, n. 2, p. 181-195
    Abstract
    This paper presents Casual Learn, an application that proposes ubiquitous learning tasks about Cultural Heritage. Casual Learn exploits a dataset of 10,000 contextualized learning tasks that were semiautomatically generated out of open data from the Web. Casual Learn offers these tasks to learners according to their physical location. For example, it may suggest describing the characteristics of the Gothic style when passing by a Gothic Cathedral. Additionally, Casual Learn has an interactive mode where learners can geo-search the tasks available. Casual Learn has been successfully used to support three pilot studies in two secondary-school institutions. It has also been awarded by the regional government and an international research conference. This made Casual Learn to appear in several regional newspapers, radios, and TV channels.
    Palabras Clave
    Semantic Web
    contextualized learning tasks
    informal learning
    ISSN
    1570-0844
    Revisión por pares
    SI
    DOI
    10.3233/SW-212907
    Patrocinador
    This work has been partially funded by the European Regional Development Fund and the Regional Government of Castile and Leon under project grant VA257P18, and by the European Regional Development Fund and the Spanish National Research Agency under project grants SmartLET (TIN2017-85179-C3-2-R) and H2O (PID2020-112584RB-C32)
    Version del Editor
    https://journals.sagepub.com/doi/full/10.3233/SW-212907
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74149
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    alam-et-al-2022-casual-learn-a-linked-data-based-mobile-application-for-learning-about-local-cultural-heritage.pdf
    Tamaño:
    368.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10