Mostrar el registro sencillo del ítem

dc.contributor.authorGacto, María José
dc.contributor.authorGalende Hernández, Marta 
dc.contributor.authorAlcalá, Rafael
dc.contributor.authorHerrera, Francisco
dc.date.accessioned2025-01-31T12:07:17Z
dc.date.available2025-01-31T12:07:17Z
dc.date.issued2013
dc.identifier.citation2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-7es
dc.identifier.isbn978-1-4799-0022-0es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74723
dc.descriptionProducción Científicaes
dc.description.abstractThis paper addresses the challenging problem of fuzzy modeling in high-dimensional and large scale regression datasets. To this end, we propose a scalable two-stage method for obtaining accurate fuzzy models in high-dimensional regression problems using approximate Takagi-Sugeno-Kang Fuzzy Rule-Based Systems. In the first stage, we propose an effective Multi-Objective Evolutionary Algorithm, based on an embedded genetic Data Base learning (involved variables, granularities and a slight lateral displacement of fuzzy partitions) together with an inductive rule base learning within the same process. The second stage is a post-processing process based on a second MOEA to perform a rule selection and a fine scatter-based tuning of the Membership Functions. Moreover, it incorporates an efficient Kalman filter to estimate the coefficients of the consequent polynomial functions in the Takagi-Sugeno-Kang rules. In both stages, we include mechanisms in order to significantly improve the accuracy of the model and to ensure a fast convergence in high-dimensional regression problems. The proposed method is compared to the classical ANFIS method and to a well-known evolutionary learning algorithm for obtaining accurate TSK systems in 8 datasets with different sizes and dimensions, obtaining better results.es
dc.format.extent7 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleObtaining accurate TSK Fuzzy Rule-Based Systems by Multi-Objective Evolutionary Learning in high-dimensional regression problemses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holderIEEEes
dc.identifier.doi10.1109/FUZZ-IEEE.2013.6622381es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/6622381es
dc.title.event2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)es
dc.description.projectSpanish Ministry of Education and Science under grant no. TIN2011-28488es
dc.description.projectSpanish Ministry of Science and Innovation under grant no. DPI2009-14410-C02- 02es
dc.description.projectAndalusian Government under grant no. P10-TIC- 6858es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem