• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Datos de Investigación
    • Datasets
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Datos de Investigación
    • Datasets
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75101

    Título
    Dataset for publication "Using learning design and learning analytics to promote, detect and support Socially-Shared Regulation of Learning: A systematic literature review"
    Autor
    Villa Torrano, CristinaAutoridad UVA
    Suraworachet, Wannapon
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Martínez Monés, AlejandraAutoridad UVA
    Zhou, Qi
    Cukurova, Mutlu
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Editor
    Elsevier
    Año del Documento
    2025
    Documento Fuente
    Cristina Villa-Torrano, Wannapon Suraworachet, Eduardo Gómez-Sánchez, Juan I. Asensio-Pérez, Miguel L. Bote-Lorenzo, Alejandra Martínez-Monés, Qi Zhou, Mutlu Cukurova, Yannis Dimitriadis, Using learning design and learning analytics to promote, detect and support Socially-Shared Regulation of Learning: A systematic literature review, Computers & Education, 2025, 105261, ISSN 0360-1315, https://doi.org/10.1016/j.compedu.2025.105261.
    Resumen
    Recent developments in educational technology research underscores the importance of individuals and groups to regulate their own learning processes and behaviours to cope with the fast-changing world around them. This led many researchers to focus on the concept of Socially-Shared Regulation of Learning (SSRL) which tries to understand the different types of collective regulatory processes that emerge while learning in groups. Although initial investigations have predominantly theorised these phenomena, there is a growing need to operationalize SSRL to prepare learners for a future in which regulation of their learning is a key skill for success. This necessitates systematic examination of how Learning Design (LD) and Learning Analytics (LA) can be leveraged to promote, detect, and support SSRL. Therefore, this paper presents a systematic literature review of 110 empirical studies with the aim of identifying: (i) what does empirical literature consider as SSRL; (ii) how is LD used to promote SSRL; (iii) how are LA and LD used to detect SSRL; and (iv) how are LD and LA used to support SSRL. The findings from the literature indicate three major challenges to the operationalization of SSRL support in the real-world: (i) the lack of convergence in theoretical models, together with the lack of validated instruments for detecting (e.g., coding schemes) and measuring (e.g., questionnaires) SSRL processes; (ii) the types of data most frequently collected and the analysis techniques used make it difficult to provide SSRL support to the students during the learning situations; and (iii) there is a lack of tools designed to promote, detect, and support SSRL processes. This paper describes each challenge, and provides a discussion about potential future research opportunities for tackling them.
    Departamento
    Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSI Telecomunicación, Universidad de Valladolid
    Dpto. de Informática, ETSI Informática, Universidad de Valladolid
    UCL Knowledge Lab, University College London, United Kingdom
    DOI
    10.35376/10324/75101
    Patrocinador
    This research is partially funded by the MICIU/AEI/10.13039/501100011033 and by ERDF, EU, under project grants PID2020-112584RB-C32 and PID2023-146692OB-C32. It has also been supported by the Regional Government of Castile and Leon and by FEDER, under project grant VA176P23. Moreover, it has been partially supported by the Teacher-AI Complementarity (TaiCo) project funded by the European Commission’s Horizon Programme under the HORIZONCL2-2024-TRANSFORMATIONS-01 call with the Project ID:101177268.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75101
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Datasets [64]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    all_papers_features.xlsx
    Tamaño:
    36.21Kb
    Formato:
    Hoja Excel
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10