Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75137
Título
Improving model choice in classification: an approach based on clustering of covariance matrices
Año del Documento
2024
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Statistics and Computing, 2024, vol. 34, n. 4
Resumo
This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on
the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions.
This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious
Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM
(Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model-
based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion,
creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows
us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness
for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable
size, shape and orientation constraints, and applying them to both simulation and real data examples.
Materias Unesco
12 Matemáticas
Palabras Clave
Parsimonious model
Gaussian mixture model
Bayesian information criterion
Model-based classification
EM algorithm
ISSN
0960-3174
Revisión por pares
SI
Patrocinador
Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
Ministerio de Ciencia e Innovación (MICINN) FEDER (grant PID2021-128314NB-I00)
Ministerio de Ciencia e Innovación (MICINN) FEDER (grant PID2021-128314NB-I00)
Version del Editor
Propietario de los Derechos
© 2024 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
