Show simple item record

dc.contributor.authorCastro Caballero, Manuel De 
dc.contributor.authorOsorio, Roberto R.
dc.contributor.authorTorres de la Sierra, Yuri 
dc.contributor.authorLlanos Ferraris, Diego Rafael 
dc.date.accessioned2025-05-20T08:10:22Z
dc.date.available2025-05-20T08:10:22Z
dc.date.issued2025
dc.identifier.citation33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, Arkansas, USAes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75777
dc.descriptionProducción Científicaes
dc.description.abstractDifferential Evolution (DE) [5] with Numerical Integration (NI) is an ideal target for Custom Computing Machines on FPGAs, since it produces deep pipelines, requires minimal external memory bandwidth, and benefits from large memory bandwidth. DE is a genetic algorithm used for scientific model optimization. We propose a generic FPGA-based DE architecture, parameterized to accommodate to different scientific models. It supports both non-adaptive and adaptive NI methods. The core DE engine is programmed in VHDL for high adaptability and performance, whereas the scientific models and their NI are programmed in C++ for flexibility and easiness of development.es
dc.format.extentPósteres
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectInformáticaes
dc.titleAccelerating Scientific Model Optimization with a Pipelined FPGA-Based Differential Evolution Enginees
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.13140/RG.2.2.22570.94403es
dc.relation.publisherversionhttps://www.researchgate.net/publication/391892110_Accelerating_Scientific_Model_Optimization_with_a_Pipelined_FPGA-Based_Differential_Evolution_Enginees
dc.title.event33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)es
dc.description.projectThis work was supported in part by Grant PID2022-142292NB-I00 (NATASHA Project); by grant TED2021–130367B–I00, funded by MCIN/AEI/10.13039/501100011033; and by MCIN/AEI/10.13039/501100011033 through the EU Grant PID2022-136435NB-I00. Manuel de Castro has been supported by a FPU 2022 grant. This research was supported by grants from NVIDIA and utilized NVIDIA A100.es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco3304 Tecnología de Los Ordenadoreses


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record