Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez Esteban, Pedro César 
dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.contributor.authorCrespo Guerrero, Javier
dc.date.accessioned2025-05-22T10:55:46Z
dc.date.available2025-05-22T10:55:46Z
dc.date.issued2025
dc.identifier.citationAdv Data Anal Classif (2025). https://doi.org/10.1007/s11634-025-00642-9es
dc.identifier.issn1862-5347es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75789
dc.descriptionProducción Científicaes
dc.description.abstractOutliers are known to be detrimental to widely used clustering techniques. Robust clustering alternatives have been introduced to better resist outlying observations. Among these, robust clustering methods based on trimming have proven effective by allowing the removal of a fraction of observations where outliers are likely to be found, with TCLUST being one of the most popular for handling elliptically contoured clusters. The algorithm for applying TCLUST can be seen as an extension of the concentration steps used in the fast-MCD algorithm for computing the Minimum Covariance Determinant. However, obtaining good initializations for these concentration steps in TCLUST is more complex than in MCD. This initialization task is particularly challenging unless both the number of clusters and the dimensionality are small. To address this, a new ensemble initialization procedure for TCLUST will be presented, which takes advantage of partially correct information from all iterated random initializations rather than focusing solely on the best individual one found. Initial experiments suggest that this methodology could improve the computational performance of the standard TCLUST algorithm.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.classificationCluster analysises
dc.subject.classificationRobustnesses
dc.subject.classificationTrimminges
dc.subject.classificationModel-based clusteringes
dc.titleImproving the computational performance of TCLUST through ensemble initializationes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s11634-025-00642-9es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11634-025-00642-9es
dc.identifier.publicationtitleAdvances in Data Analysis and Classificationes
dc.peerreviewedSIes
dc.description.projectOpen access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027. This research has been partially supported by grant PID2021-128314NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER and Junta Castilla y León grant VA064G24.es
dc.identifier.essn1862-5355es
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco62H30es
dc.subject.unesco62H11es
dc.subject.unesco62G35es


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem