Mostra i principali dati dell'item

dc.contributor.authorMateo Romero, Héctor Felipe 
dc.contributor.authorCarbonó de la Rosa, Mario Eduardo
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorGonzález Rebollo, Miguel Ángel 
dc.contributor.authorCardeñoso Payo, Valentín 
dc.contributor.authorAlonso Gómez, Víctor 
dc.contributor.authorGallardo Saavedra, Sara 
dc.contributor.authorMorales Aragones, José Ignacio 
dc.date.accessioned2025-07-29T08:11:37Z
dc.date.available2025-07-29T08:11:37Z
dc.date.issued2025
dc.identifier.citationProgress in Artificial Intelligence, 2025, vol. 14, p. 49-59.es
dc.identifier.issn2192-6352es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76925
dc.descriptionProducción Científicaes
dc.description.abstractThis study introduces a Mamdani Fuzzy Logic model designed to classify solar cells based on their energetic performance. The model incorporates three distinct inputs, namely the proportions of black pixels, gray pixels, and white pixels, extracted from Electroluminescence images of the cells. Additionally, an output is included to signal potential issues with input data. The development of the model involved utilizing cells with known performance, determined through the measurement of Intensity-Voltage Curves. The efficacy of the model was demonstrated through testing with a validation set, yielding an accuracy rate of 99.0% in the Polycrystalline dataset and 98% in the Monocrystalline. In comparison, traditional machine learning methods such as Ensemble Classifiers and Decision Trees achieved inferior accuracy rates. These results show the superior problem-solving capability of the presented Fuzzy Logic model over conventional machine-learning approaches.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationFuzzy logices
dc.subject.classificationPhotovoltaices
dc.subject.classificationElectroluminescencees
dc.subject.classificationMachine learninges
dc.titleEnhancing photovoltaic cell classification through Mamdani Fuzzy logic: a comparative study with machine learning approaches employing electroluminescence imageses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© Springeres
dc.identifier.doi10.1007/s13748-024-00353-wes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s13748-024-00353-wes
dc.identifier.publicationfirstpage49es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage59es
dc.identifier.publicationtitleProgress in Artificial Intelligencees
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.project"Contratos Predoctorales UVA 2020" funded by Universidad de Valladolid and Santander Bankes
dc.description.projectProject "PID2020-113533RB-C33" financed by Spanish Ministry of Science and Innovationes
dc.description.project"Convenio general de cooperación entre la Universidad de Valladolid (España) y la Corporación Universidad de la Costa (Colombia)"es
dc.description.projectERASMUS+ KA-107 from the Universidad of Valladolides
dc.description.projectMOVILIDAD DE DOCTORANDOS Y DOCTORANDAS UVa 2023 from the University of Valladolides
dc.identifier.essn2192-6360es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3322 Tecnología energéticaes


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item