Mostra i principali dati dell'item
dc.contributor.author | Mateo Romero, Héctor Felipe | |
dc.contributor.author | Carbonó de la Rosa, Mario Eduardo | |
dc.contributor.author | Hernández Callejo, Luis | |
dc.contributor.author | González Rebollo, Miguel Ángel | |
dc.contributor.author | Cardeñoso Payo, Valentín | |
dc.contributor.author | Alonso Gómez, Víctor | |
dc.contributor.author | Gallardo Saavedra, Sara | |
dc.contributor.author | Morales Aragones, José Ignacio | |
dc.date.accessioned | 2025-07-29T08:11:37Z | |
dc.date.available | 2025-07-29T08:11:37Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Progress in Artificial Intelligence, 2025, vol. 14, p. 49-59. | es |
dc.identifier.issn | 2192-6352 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/76925 | |
dc.description | Producción Científica | es |
dc.description.abstract | This study introduces a Mamdani Fuzzy Logic model designed to classify solar cells based on their energetic performance. The model incorporates three distinct inputs, namely the proportions of black pixels, gray pixels, and white pixels, extracted from Electroluminescence images of the cells. Additionally, an output is included to signal potential issues with input data. The development of the model involved utilizing cells with known performance, determined through the measurement of Intensity-Voltage Curves. The efficacy of the model was demonstrated through testing with a validation set, yielding an accuracy rate of 99.0% in the Polycrystalline dataset and 98% in the Monocrystalline. In comparison, traditional machine learning methods such as Ensemble Classifiers and Decision Trees achieved inferior accuracy rates. These results show the superior problem-solving capability of the presented Fuzzy Logic model over conventional machine-learning approaches. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject.classification | Fuzzy logic | es |
dc.subject.classification | Photovoltaic | es |
dc.subject.classification | Electroluminescence | es |
dc.subject.classification | Machine learning | es |
dc.title | Enhancing photovoltaic cell classification through Mamdani Fuzzy logic: a comparative study with machine learning approaches employing electroluminescence images | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © Springer | es |
dc.identifier.doi | 10.1007/s13748-024-00353-w | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s13748-024-00353-w | es |
dc.identifier.publicationfirstpage | 49 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationlastpage | 59 | es |
dc.identifier.publicationtitle | Progress in Artificial Intelligence | es |
dc.identifier.publicationvolume | 14 | es |
dc.peerreviewed | SI | es |
dc.description.project | "Contratos Predoctorales UVA 2020" funded by Universidad de Valladolid and Santander Bank | es |
dc.description.project | Project "PID2020-113533RB-C33" financed by Spanish Ministry of Science and Innovation | es |
dc.description.project | "Convenio general de cooperación entre la Universidad de Valladolid (España) y la Corporación Universidad de la Costa (Colombia)" | es |
dc.description.project | ERASMUS+ KA-107 from the Universidad of Valladolid | es |
dc.description.project | MOVILIDAD DE DOCTORANDOS Y DOCTORANDAS UVa 2023 from the University of Valladolid | es |
dc.identifier.essn | 2192-6360 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |
dc.subject.unesco | 3322 Tecnología energética | es |