Mostrar el registro sencillo del ítem

dc.contributor.authorMartín Encinar, Luis 
dc.contributor.authorLanzoni, Daniele
dc.contributor.authorFantasia, Andrea
dc.contributor.authorRovaris, Fabrizio
dc.contributor.authorBergamaschini, Roberto
dc.contributor.authorMontalenti, Francesco
dc.date.accessioned2025-09-18T09:13:07Z
dc.date.available2025-09-18T09:13:07Z
dc.date.issued2025
dc.identifier.citationComputational Materials Science, Volume 249, 2025, 113657es
dc.identifier.issn0927-0256es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/77889
dc.descriptionProducción Científicaes
dc.description.abstractA Deep Learning approach is devised to estimate the elastic energy density at the free surface of an undulated stressed film. About 190000 arbitrary surface profiles are randomly generated by Perlin noise and paired with the corresponding elastic energy density profiles , computed by a semi-analytical Green’s function approximation, suitable for small-slope morphologies. The resulting dataset and smaller subsets of it are used for the training of a Fully Convolutional Neural Network. The trained models are shown to return quantitative predictions of , not only in terms of convergence of the loss function during training, but also in validation and testing, with better results in the case of the larger dataset. Extensive tests are performed to assess the generalization capability of the Neural Network model when applied to profiles with localized features or assigned geometries not included in the original dataset. Moreover, its possible exploitation on domain sizes beyond the one used in the training is also analyzed in-depth. The conditions providing a one-to-one reproduction of the “ground-truth” profiles computed by the Green’s approximation are highlighted along with critical cases. The accuracy and robustness of the deep-learned are further demonstrated in the time-integration of surface evolution problems described by simple partial differential equations of evaporation/condensation and surface diffusion.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeural Networkes
dc.subjectEnergy densityes
dc.subjectRed neuronales
dc.subjectEnergía elásticaes
dc.titleQuantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained filmes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.commatsci.2024.113657es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0927025624008784?via%3Dihubes
dc.identifier.publicationfirstpage113657es
dc.identifier.publicationtitleComputational Materials Sciencees
dc.identifier.publicationvolume249es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades/ Agencia Estatal de Investigación (AEI) 10.13039/501100011033 - Project No. PID2020-115118GB-I00es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3312 Tecnología de Materialeses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem