• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/77889

    Título
    Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film
    Autor
    Martín Encinar, LuisAutoridad UVA Orcid
    Lanzoni, Daniele
    Fantasia, Andrea
    Rovaris, Fabrizio
    Bergamaschini, Roberto
    Montalenti, Francesco
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computational Materials Science, Volume 249, 2025, 113657
    Résumé
    A Deep Learning approach is devised to estimate the elastic energy density at the free surface of an undulated stressed film. About 190000 arbitrary surface profiles are randomly generated by Perlin noise and paired with the corresponding elastic energy density profiles , computed by a semi-analytical Green’s function approximation, suitable for small-slope morphologies. The resulting dataset and smaller subsets of it are used for the training of a Fully Convolutional Neural Network. The trained models are shown to return quantitative predictions of , not only in terms of convergence of the loss function during training, but also in validation and testing, with better results in the case of the larger dataset. Extensive tests are performed to assess the generalization capability of the Neural Network model when applied to profiles with localized features or assigned geometries not included in the original dataset. Moreover, its possible exploitation on domain sizes beyond the one used in the training is also analyzed in-depth. The conditions providing a one-to-one reproduction of the “ground-truth” profiles computed by the Green’s approximation are highlighted along with critical cases. The accuracy and robustness of the deep-learned are further demonstrated in the time-integration of surface evolution problems described by simple partial differential equations of evaporation/condensation and surface diffusion.
    Materias (normalizadas)
    Neural Network
    Energy density
    Red neuronal
    Energía elástica
    Materias Unesco
    3312 Tecnología de Materiales
    ISSN
    0927-0256
    Revisión por pares
    SI
    DOI
    10.1016/j.commatsci.2024.113657
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades/ Agencia Estatal de Investigación (AEI) 10.13039/501100011033 - Project No. PID2020-115118GB-I00
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0927025624008784?via%3Dihub
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/77889
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Electrónica - Artículos de revista [35]
    • DEP22 - Artículos de revista [68]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2025_MartinEncinar_CMS_249.pdf
    Tamaño:
    1.208Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10