Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78208
Título
General remainder theorem and factor theorem for polynomials over non-commutative coefficient rings
Año del Documento
2020
Editorial
Taylor & Francis
Descripción
Producción Científica
Documento Fuente
International Journal of Mathematical Education in Science and Technology, 2020, v. 51, n. 5, p. 775-785
Zusammenfassung
We propose some generalizations of the classical Division Algorithm for polynomials over coefficient rings (possibly non-commutative). These results provide a generalization of the Remainder Theorem that allows calculating the remainder without using the long division method, even if the divisor has degree greater than one. As a consequence we obtain an extension of the classical Factor Theorem that provides a general divisibility criterion for polynomials. Finally, we will refer to some applications of these results for evaluating and dividing on skew polynomial rings. The arguments can be used in basic algebra courses and are suitable for building classroom/homework activities.
Materias Unesco
12
Palabras Clave
Remainder theorem
Factor theorem
Long division
Left modulo-m congruence
Polynomial divisibility criterion
Non-commutative coefficient ring
ISSN
0020-739X
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© Taylor & Francis
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Nombre:
General remainder theorem and factor theorem for polynomials over non-commutative coefficient rings.pdfEmbargado hasta: 9999-12-31
Tamaño:
1.410Mb
Formato:
Adobe PDF