Mostra i principali dati dell'item

dc.contributor.authorGutierrez De Pablo, Victor 
dc.contributor.authorHerrero Tudela, María 
dc.contributor.authorSandonís Fernández, Marina
dc.contributor.authorPoza Crespo, Jesús 
dc.contributor.authorMaturana Candelas, Aaron 
dc.contributor.authorRodríguez González, Víctor 
dc.contributor.authorTola Arribas, Miguel Ángel 
dc.contributor.authorCano, Mónica
dc.contributor.authorHoshi, Hideyuki
dc.contributor.authorShigihara, Yoshihito
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorGómez, Carlos
dc.date.accessioned2025-09-30T08:37:20Z
dc.date.available2025-09-30T08:37:20Z
dc.date.issued2025
dc.identifier.citationBiocybernetics and Biomedical Engineering, 2025, vol. 45, n. 3, p. 438-450es
dc.identifier.issn0208-5216es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78210
dc.descriptionProducción Científicaes
dc.description.abstractDementia and mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) are neurological pathologies associated with disruptions in brain electromagnetic activity, typically studied using magnetoencephalography (MEG) and electroencephalography (EEG). To quantify diverse brain properties, different families of param- eters can be computed from MEG and EEG (i.e., spectral, non-linear, morphological, functional connectivity, or network structure and organisation). However, studying these characteristics separately overlooks the com- plex nature of brain activity. Integrative frameworks can be useful to unveil the intricate neurophysiological fingerprint, as well as to characterise pathological conditions comprehensively. To that purpose, data fusion methodologies are crucial, despite their interpretational challenges. In this study, Machine Learning (ML) mod- els were trained to discriminate between groups of severity, whereas the SHapley Additive eXplanations (SHAP) algorithm was afterwards utilised to assess the relevance of the input characteristics into the output classifica- tion. Three databases were analysed: MEG (55 healthy controls, HC, 42 MCI patients, and 86 AD patients), EEG1 (51 HC, 52 MCI, and 100 AD), and EEG2 (45 HC, 69 MCI, and 82 AD). The best results for the three-class classi- fication problem were obtained by Gradient Boosting for the MEG database: 3-class Cohen’s kappa coefficient of 0.5452 and accuracy of 72.63 %. Afterwards, using SHAP on Gradient Boosting, it has been shown that spectral features were identified as highly relevant across all databases. Furthermore, morphology measures presented high relevance for the MEG database, whereas EEG1 and EEG2 databases showed functional connectivity and multiplex organisation measures, respectively, as relevant subgroups of parameters. Finally, commonly relevant features across databases were selected using SHAP to generate the neurophysiological fingerprints of AD and MCI. This study highlights the relevance of different MEG and EEG parameters in characterising neurological pathologies. The proposed framework, based on MEG and EEG, can be used to generate interpretable, robust, and accurate neurophysiological fingerprints of AD and MCI.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAlzheimer’s diseasees
dc.subject.classificationMild cognitive impairmentes
dc.subject.classificationMachine learninges
dc.subject.classificationSHAPes
dc.subject.classificationMagnetoencephalographyes
dc.subject.classificationElectroencephalographyes
dc.subject.classificationNeurophysiological fingerprintes
dc.titleIntegrative and interpretable framework to unveil the neurophysiological fingerprint of Alzheimer’s disease and mild cognitive impairment: A machine learning-SHAP approaches
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.bbe.2025.05.011es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0208521625000397es
dc.identifier.publicationfirstpage438es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage450es
dc.identifier.publicationtitleBiocybernetics and Biomedical Engineeringes
dc.identifier.publicationvolume45es
dc.peerreviewedSIes
dc.description.projectThis research was funded by “MICIU/AEI/10.13039/ 501100011033” and by “ERDF A way of making Europe” through the project PID2022-138286NB-I00 and by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)” through “Instituto de Salud Carlos III” co-funded with ERDF fund (CONTFPI-2023-40).es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco33 Ciencias Tecnológicases


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item