• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Research Data
    • Datasets
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Research Data
    • Datasets
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78221

    Título
    Life cycle assessment of biostimulant production from algal biomass grown on piggery wastewater
    Autor
    Rojo De Benito, Elena MaríaAutoridad UVA Orcid
    Rossi, Simone
    Bolado Rodríguez, SilviaAutoridad UVA Orcid
    Gallo Stampino, Paola
    Ficara, Elena
    Dotelli, Giovanni
    Editor
    Elsevier
    Año del Documento
    2024
    Résumé
    Piggery wastewater has become a large source of pollution with high concentrations of nutrients, that must be managed and properly treated to increase its environmental viability. Currently, the use of microalgae for treating this type of wastewater has emerged as a sustainable process with several benefits, including nutrient recovery to produce valuable products such as biostimulants, and CO2 capture from flue gases. However, the biostimulant production from biomass grown on piggery wastewater also has environmental impacts that need to be studied to identify possible hotspots. This work presents the life cycle assessment by IMPACT 2002+ method of the production of microalgae-based biostimulants, comparing two different harvesting technologies (membrane in scenario 1 and centrifuge in scenario 2) and two different technologies for on-site CO2 capture from flue gases (chemical absorption and membrane separation). The use of membranes for harvesting (scenario 1) reduced the environmental impact in all categories (human health, ecosystem quality, climate change, and resources) by 30 % on average, compared to centrifuge (scenario 2). Also, membranes for CO2 capture allowed to decrease environmental impacts by 16 %, with the largest reduction in the resource category (∼33 %). Thus, the process with the best environmental viability was achieved in scenario 1 using membranes for CO2 capture, with a value of 217 kg CO2 eq/FU. In scenario 2 with centrifugation, the high contribution of the cultivation sub-unit in all impacts was highlighted (>75 %), while in scenario 1 the production sub-unit also had moderate contribution in the human health (∼35 %) and climate change (∼30 %) categories due to the lower concentration and high flow rates. These results were obtained under a worst-case situation with pilot scale optimized parameters, with limited data which would have to be further optimized at industrial-scale implementation. The sensitivity analysis showed a little influence of the parameters that contribute the most to the impacts, except for the transportation of the piggery wastewater to the processing plant in scenario 2. Because of the relevant impact of biostimulant transportation in scenario 1, centrifugation becomes more favourable when transportation distance is longer than 321 km.
    Palabras Clave
    Microalgae
    Agricultural product
    Biomass valorisation
    Life cycle assessment
    Climate change
    Departamento
    Instituto de Procesos Sostenibles
    Departamento de Ingeniería Química y Tecnología del Medio Ambiente
    Department of Civil and Environmental Engineering, Politecnico di Milano
    Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano
    DOI
    10.71569/60kt-se35
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades
    EU Feder Programme
    Consejeria de Educacion Junta de Castilla y Leon
    Patrocinador
    PID2020-113544RB-I00 /AEI/10.13039/501100011033
    PDC2021-121861-C22 / AEI / 10.13039/501100011033
    PRE2018-083845
    UIC 338
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/78221
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Es referenciado por
    Science of The Total Environment Volume 907, 10 January 2024, 168083, https://doi.org/10.1016/j.scitotenv.2023.168083
    Es parte de
    Science of The Total Environment Volume 907, 10 January 2024, 168083, https://doi.org/10.1016/j.scitotenv.2023.168083
    Aparece en las colecciones
    • Datasets [100]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Comparación escenarios (sin avoided).xlsx
    Tamaño:
    751.3Ko
    Formato:
    Hoja Excel
    Voir/Ouvrir
    Nombre:
    Escenario 1 (UF bioestimulante).xlsx
    Tamaño:
    971.2Ko
    Formato:
    Hoja Excel
    Voir/Ouvrir
    Nombre:
    Escenario 2 (UF bioestimulante).xlsx
    Tamaño:
    866.1Ko
    Formato:
    Hoja Excel
    Voir/Ouvrir
    Nombre:
    Escenario 3 (UF bioestimulante).xlsx
    Tamaño:
    951.3Ko
    Formato:
    Hoja Excel
    Voir/Ouvrir
    Nombre:
    Escenario 4 (UF bioestimulante).xlsx
    Tamaño:
    958.8Ko
    Formato:
    Hoja Excel
    Voir/Ouvrir
    CC0 1.0 UniversalExcepté là où spécifié autrement, la license de ce document est décrite en tant que CC0 1.0 Universal

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10