Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78224
Título
Calibration-free Ocular artifact reduction in EEG signals using a montage-independent deep learning model
Autor
Año del Documento
2025
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Biomedical Signal Processing and Control, 2025, vol.110, p. 108147
Zusammenfassung
Ocular artifacts (OA) are the most common artifacts in electroencephalography (EEG), significantly affecting
signal quality and analysis. Common approaches like indepentent component analysis (ICA) or regression-based
methods address this problem but require several minutes of subject-specific EEG and electrooculography
(EOG) calibration, making them impractical for real-time applications like brain–computer interfaces (BCI).
In this study, we introduce EEGOAR-Net, a deep learning architecture designed to reduce OA in EEG. It
address these issues while also providing flexibility across various EEG montages. Based on U-Net architecture,
EEGOAR-Net was trained with contaminated EEG signals in order to reconstruct them with OA attenuated,
using SGEYESUB as the reference method. In addition, a novel training methodology based on masking signals
from different channels was applied to make EEGOAR-Net independent of the EEG montage used. A cross-
validation analysis was conducted to assess EEGOAR-Net’s performance, demonstrating its ability to reduce
EEG-EOG correlations to chance levels across most brain regions with minimal information loss. Thus, the
performance of EEGOAR-Net is comparable to that of the reference method without the need for subject-
specific calibration or EOG channels. Furthermore, validation on an additional dataset confirmed effective
blink reduction and superior preservation of neural information compared to the state-of-the-art models: 1D-
ResCNN and IC-U-Net. EEGOAR-Net’s performance across datasets and versatility across montages prove it to
be a reliable and practical solution for EEG-based research and BCI applications, ensuring a notable reduction
of OA on signal while maintaining the integrity of neural information.
Materias Unesco
32 Ciencias Médicas
33 Ciencias Tecnológicas
Palabras Clave
Deep learning
Ocular artifacts
Electroencephalography
Brain–computer interfaces
Electrooculography
ISSN
1746-8094
Revisión por pares
SI
Patrocinador
Esta publicación forma parte del proyecto TED2021-129915B-I00, financiado por MICIU/AEI/10.13039/501100011033 y el programa NextGenerationEU/PRTR de la Unión Europea.
Este trabajo contó con el apoyo de los proyectos 0124_EUROAGE_MAS_4_E, cofinanciado por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027, y VA140P2 de la Federación Europea.
Este trabajo contó con el apoyo de los proyectos 0124_EUROAGE_MAS_4_E, cofinanciado por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027, y VA140P2 de la Federación Europea.
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución-NoComercial 4.0 Internacional










