• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78224

    Título
    Calibration-free Ocular artifact reduction in EEG signals using a montage-independent deep learning model
    Autor
    Marcos Martínez, DiegoAutoridad UVA
    Pérez Velasco, SergioAutoridad UVA
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    SantaMaría Vazquez, EduardoAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Biomedical Signal Processing and Control, 2025, vol.110, p. 108147
    Resumen
    Ocular artifacts (OA) are the most common artifacts in electroencephalography (EEG), significantly affecting signal quality and analysis. Common approaches like indepentent component analysis (ICA) or regression-based methods address this problem but require several minutes of subject-specific EEG and electrooculography (EOG) calibration, making them impractical for real-time applications like brain–computer interfaces (BCI). In this study, we introduce EEGOAR-Net, a deep learning architecture designed to reduce OA in EEG. It address these issues while also providing flexibility across various EEG montages. Based on U-Net architecture, EEGOAR-Net was trained with contaminated EEG signals in order to reconstruct them with OA attenuated, using SGEYESUB as the reference method. In addition, a novel training methodology based on masking signals from different channels was applied to make EEGOAR-Net independent of the EEG montage used. A cross- validation analysis was conducted to assess EEGOAR-Net’s performance, demonstrating its ability to reduce EEG-EOG correlations to chance levels across most brain regions with minimal information loss. Thus, the performance of EEGOAR-Net is comparable to that of the reference method without the need for subject- specific calibration or EOG channels. Furthermore, validation on an additional dataset confirmed effective blink reduction and superior preservation of neural information compared to the state-of-the-art models: 1D- ResCNN and IC-U-Net. EEGOAR-Net’s performance across datasets and versatility across montages prove it to be a reliable and practical solution for EEG-based research and BCI applications, ensuring a notable reduction of OA on signal while maintaining the integrity of neural information.
    Materias Unesco
    32 Ciencias Médicas
    33 Ciencias Tecnológicas
    Palabras Clave
    Deep learning
    Ocular artifacts
    Electroencephalography
    Brain–computer interfaces
    Electrooculography
    ISSN
    1746-8094
    Revisión por pares
    SI
    DOI
    10.1016/j.bspc.2025.108147
    Patrocinador
    Esta publicación forma parte del proyecto TED2021-129915B-I00, financiado por MICIU/AEI/10.13039/501100011033 y el programa NextGenerationEU/PRTR de la Unión Europea.
    Este trabajo contó con el apoyo de los proyectos 0124_EUROAGE_MAS_4_E, cofinanciado por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027, y VA140P2 de la Federación Europea.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1746809425006585
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78224
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [42]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Calibration-free-ocular-artifact.pdf
    Tamaño:
    3.944Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución-NoComercial 4.0 InternacionalLa licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10