Mostra i principali dati dell'item

dc.contributor.authorDo Vale Borges, André
dc.contributor.authorTorres Franco, Andrés Felipe 
dc.contributor.authorZamariolli Damianovic, Márcia Helena Rissato
dc.contributor.authorMuñoz Torre, Raúl 
dc.date.accessioned2025-10-10T13:12:45Z
dc.date.available2025-10-10T13:12:45Z
dc.date.issued2025
dc.identifier.citationJournal of Hazardous Materials, 2025, vol. 496, p. 139539es
dc.identifier.issn0304-3894es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78577
dc.descriptionProducción Científicaes
dc.description.abstractSugarcane vinasse, a major by-product of ethanol production, poses environmental and health risks due to its high sulfate content, promoting severe hydrogen sulfide (H2S) formation (up to 50,000 ppmv) during acidogenic fermentation. The resulting H2S and high carbon dioxide (CO2) levels in off-gas create serious hazards, often leading to conventional desulfurization systems’ clogging and high maintenance. This study is the first to investigate a Chloroidium-based combined microalgal-bacterial (CMB) system for simultaneous, high-strength H2S abatement and CO2 sequestration from these challenging vinasse fermentation off-gas streams. Utilizing a 14 L bubble column photobioreactor under increasing gas flow conditions, the system achieved 100 % H2S and 98.2 % CO2 removal efficiencies within 72 h, with a maximum H2S elimination capacity of 30.3 gS-H2S m⁻3 h⁻1. A comprehensive sulfur mass balance revealed that up to 99 % of theoretical sulfate was consumed by the consortium for biomass growth, demonstrating efficient sulfur valorization. Performance was sustained by elevated dissolved oxygen (averaging 15.0 g L 1), ensuring complete H2S oxidation to sulfate without inhibitoryes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationBiogas upgradinges
dc.subject.classificationVinasse circular bioeconomyes
dc.subject.classificationCO2 sequestrationes
dc.subject.classificationHydrogen sulfide removales
dc.subject.classificationMicroalgal-bacterial systemes
dc.titleReducing carbon footprint in high H2S emissions: A synergistic microalgal-bacterial solution for sugarcane biorefinerieses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.jhazmat.2025.139539es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0304389425024586es
dc.identifier.publicationfirstpage139539es
dc.identifier.publicationtitleJournal of Hazardous Materialses
dc.identifier.publicationvolume496es
dc.peerreviewedSIes
dc.description.projectThis work was supported by the São Paulo Research Foundation [grant numbers 2021/15245–5; 2023/04885–9]es
dc.description.projectJunta de Castilla y León (UIC 379)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3308 Ingeniería y Tecnología del Medio Ambientees


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item