Mostrar el registro sencillo del ítem

dc.contributor.authorVillaizán Vallelado, Mario 
dc.contributor.authorSalvatori, Matteo
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier 
dc.date.accessioned2025-10-21T06:38:09Z
dc.date.available2025-10-21T06:38:09Z
dc.date.issued2025
dc.identifier.citationAndreu Catalá, Gonzalo Joya y Ignacio Rojas. IWANN 2025 18th International Work-Conference on Artificial Neural Networks. A Coruña: IWANN, 2025, p. 1-1.es
dc.identifier.isbn979-13-8752213-1es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78835
dc.descriptionProducción Científicaes
dc.description.abstractMost Artificial Intelligence models require the information in the records to be used to be fully informed. These models require a policy for handling missing information. However, traditional policies have tried to fill in the missing information with known information. This approach is correct when the missing information is random and wrong when it is not. In this article we start with a review of the main policies employed, and analyse the consequences of elimination or imputation policies and argue that these policies are sometimes unwise.es
dc.format.extent1 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIWANN, A coruñaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTackling Missing Data Head-On: Strategies to Mitigate Survival and Confirmation Biases
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.relation.publisherversionhttps://iwann.uma.es/wp-content/uploads/2025/06/IWANN2025_Abstract_ISBN.pdfes
dc.title.event18th International Work-Conference on Artificial Neural Networkses
dc.rightsAttribution 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco
dc.subject.unescoestadística


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem