| dc.contributor.author | Cruz, Pedro | |
| dc.contributor.author | Lebrero Fernández, Raquel | |
| dc.contributor.author | Vergara Fernández, Alberto | |
| dc.contributor.author | Muñoz Torre, Raúl | |
| dc.date.accessioned | 2025-10-22T12:25:57Z | |
| dc.date.available | 2025-10-22T12:25:57Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Chemical Engineering Journal, 2025, vol. 522, p. 167871 | es |
| dc.identifier.issn | 1385-8947 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78906 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | The microbial valorization of CO2 requires the development of novel bioreactor configurations capable of ensuring a cost-effective gas-liquid mass transfer. This study
presents the design, characterization and performance evaluation of a novel Airlift Taylor Flow Reactor (ATFR), which integrates the gas-induced liquid recirculation
of airlift systems, with the high gas-liquid mass transfer potential of Taylor flow in multicapillary systems. The liquid recirculation flow in the downcomer was
quantified using a colour tracer method, and the volumetric oxygen mass transfer coefficient (kLa) was determined via the sulphite oxidation method, both with and
without forced recirculation. The results showed that the implementation of forced mechanical recirculation via a centrifugal pump negatively impacted the total
liquid recirculation and kLa. A maximum kLa of 891 ± 23 h 1 was achieved at a gas flow rate of 60 L min 1, representing a 75 % increase compared to the same
condition with external forced liquid recirculation. The autotrophic growth of Cupriavidus necator showed a direct correlation with kLa, with a 171 % increase in
maximum cell concentration and a 67 % increase in the specific growth rate when kLa increased from 183 to 364 h 1. These findings highlight the potential of the
ATFR as a promising platform for gas-liquid mass transfer-limited processes, particularly in systems bioconverting poorly soluble gases such as H2, CH4, CO and O2. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject.classification | Bioreactors | es |
| dc.subject.classification | Reactor (ATFR) | es |
| dc.title | Airlift Taylor Flow bioreactors as a novel platform to enhance H2-assisted CO2 bioconversion processes | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2025 The Author(s) | es |
| dc.identifier.doi | 10.1016/j.cej.2025.167871 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S138589472508711X | es |
| dc.identifier.publicationfirstpage | 167871 | es |
| dc.identifier.publicationtitle | Chemical Engineering Journal | es |
| dc.identifier.publicationvolume | 522 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | La Agencia Española de Investigación agradece el apoyo financiero para la realización de esta investigación (PDC2022–133394-I00) | es |
| dc.description.project | Agencia Nacional de Investigación y Desarrollo (ANID) de Chile a través de los siguientes proyectos: Beca Nacional de Doctorado Folio 21220445, Cotutela Doctoral Folio 21220445, Anillo ATE220045 y Fondecyt 1240411 | es |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 23 Química | es |