Show simple item record

dc.contributor.authorCruz, Pedro
dc.contributor.authorLebrero Fernández, Raquel 
dc.contributor.authorVergara Fernández, Alberto
dc.contributor.authorMuñoz Torre, Raúl 
dc.date.accessioned2025-10-22T12:25:57Z
dc.date.available2025-10-22T12:25:57Z
dc.date.issued2025
dc.identifier.citationChemical Engineering Journal, 2025, vol. 522, p. 167871es
dc.identifier.issn1385-8947es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78906
dc.descriptionProducción Científicaes
dc.description.abstractThe microbial valorization of CO2 requires the development of novel bioreactor configurations capable of ensuring a cost-effective gas-liquid mass transfer. This study presents the design, characterization and performance evaluation of a novel Airlift Taylor Flow Reactor (ATFR), which integrates the gas-induced liquid recirculation of airlift systems, with the high gas-liquid mass transfer potential of Taylor flow in multicapillary systems. The liquid recirculation flow in the downcomer was quantified using a colour tracer method, and the volumetric oxygen mass transfer coefficient (kLa) was determined via the sulphite oxidation method, both with and without forced recirculation. The results showed that the implementation of forced mechanical recirculation via a centrifugal pump negatively impacted the total liquid recirculation and kLa. A maximum kLa of 891 ± 23 h 1 was achieved at a gas flow rate of 60 L min 1, representing a 75 % increase compared to the same condition with external forced liquid recirculation. The autotrophic growth of Cupriavidus necator showed a direct correlation with kLa, with a 171 % increase in maximum cell concentration and a 67 % increase in the specific growth rate when kLa increased from 183 to 364 h 1. These findings highlight the potential of the ATFR as a promising platform for gas-liquid mass transfer-limited processes, particularly in systems bioconverting poorly soluble gases such as H2, CH4, CO and O2.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationBioreactorses
dc.subject.classificationReactor (ATFR)es
dc.titleAirlift Taylor Flow bioreactors as a novel platform to enhance H2-assisted CO2 bioconversion processeses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.cej.2025.167871es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S138589472508711Xes
dc.identifier.publicationfirstpage167871es
dc.identifier.publicationtitleChemical Engineering Journales
dc.identifier.publicationvolume522es
dc.peerreviewedSIes
dc.description.projectLa Agencia Española de Investigación agradece el apoyo financiero para la realización de esta investigación (PDC2022–133394-I00)es
dc.description.projectAgencia Nacional de Investigación y Desarrollo (ANID) de Chile a través de los siguientes proyectos: Beca Nacional de Doctorado Folio 21220445, Cotutela Doctoral Folio 21220445, Anillo ATE220045 y Fondecyt 1240411es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco23 Químicaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record