Mostrar el registro sencillo del ítem

dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorGutierrez Tobal, Gonzalo César 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2025-11-19T13:26:38Z
dc.date.available2025-11-19T13:26:38Z
dc.date.issued2025
dc.identifier.citationEngineering Applications of Artificial Intelligence, 2025, vol. 162, p. 112562es
dc.identifier.issn0952-1976es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/79844
dc.descriptionProducción Científicaes
dc.description.abstractDeep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2) recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) pa- tients. However, lack of interpretability and validation across patients from a wide range of ages (children, adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep, deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO2 signals. An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO2 signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with accuracies between 81.5 % and 84.5 % and Cohen’s kappa values from 0.726 to 0.779. It also demonstrated greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability in PR and SpO2 amplitude, as well as changes in their spectral content across specific frequency bands (0.004–0.020 Hz, 0.020–0.100 Hz, and 0.180–0.400 Hz), for sleep stage classification. These findings indicate that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in clinical settings.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAge subgroupses
dc.subject.classificationDeep learninges
dc.subject.classificationExplainable artificial intelligencees
dc.subject.classificationPulse oximetryes
dc.subject.classificationObstructive sleep apneaes
dc.subject.classificationSleep stageses
dc.titleAn explainable deep learning approach for sleep staging in sleep apnea patients across all age subgroups from pulse oximetry signalses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.engappai.2025.112562es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S095219762502593Xes
dc.identifier.publicationfirstpage112562es
dc.identifier.publicationtitleEngineering Applications of Artificial Intelligencees
dc.identifier.publicationvolume162es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación - MCIN/AEI/10.13039/50110001103, el Fondo Social (FSE+) y la Unión Europea. “NextGenerationEU”/PRTR (projects PID2023-148895OB-I00, PID2020-115468RB-I00, and CPP2022-009735)es
dc.description.projectEsta investigación fue cofinanciada por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E)es
dc.description.projectConsorcio del Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (CB19/01/00012) a través del Instituto de Salud Carlos III (ISCIII), cofinanciado con el Fondo Europeo de Desarrollo Regionales
dc.description.projectInstituto de Salud Carlos III (ISCIII), cofinanciada por el FSE+ (beca «Sara Borrell» (CD23/00031))es
dc.description.projectMinisterio de Ciencia e Innovación - MCIN/AEI/10.13039/501100011033 y el Fondo Social Europeo «Invertir en tu futuro» (beca «Ramón y Cajal» (RYC2019-028566-I))es
dc.description.projectInstituto Nacional sobre el Envejecimiento (grant AG061824)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem