Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80188
Título
Flow prediction in sound-based uroflowmetry
Año del Documento
2025
Editorial
Springer Nature
Descripción
Producción Científica
Documento Fuente
Scientific Reports, vol. 15, n. 643
Abstract
Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF)
for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need
for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50
male volunteers (aged 18–60), with UF results from a Minze uroflowmeter as the reference standard.
Audio signals recorded during voiding were segmented and machine learning algorithms (gradient
boosting, random forest, and support vector machine) estimated flow parameters from three devices:
Ultramic384k, Mi A1 smartphone, and Oppo smartwatch. The mean absolute error for flow rate
estimation were 2.6, 2.5 and 2.9 ml/s, with R2 values of 84%, 83%, and 79%, respectively. Analysis
of the Ultramic384k’s frequency range showed that the 0–8 kHz band contained 83% of significant
components, suggesting higher sampling frequencies are unnecessary. A 1000 ms segment size was
optimal for balancing computational efficiency and accuracy. Lin’s concordance coefficients for urine
flow and voided volume using the smartwatch (0–8 kHz, 1000 ms) were 0.9 and 0.85, respectively,
demonstrating that SU is a reliable, cost-effective alternative to UF for estimating key uroflowmetry
parameters, with added patient convenience.
Palabras Clave
Acoustic voiding signals
Flow prediction
Machine learning
Sound-based uroflowmetry
ISSN
2045-2322
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (MICIU) a través del proyecto SWALU CPP2022-010045 y ‘Ayuda para contratos predoctorales 2020 (ref. PRE2020-095612)' financiado por MICIU/AEI /10.13039/501100011033 y cofinanciado por FSE invierte en tu futuro
Ministerio a través del proyecto Aginplace (ref. PID2023-146254OB-C41 y ref. PID2023-146254OA-C44)
Ministerio a través del proyecto Aginplace (ref. PID2023-146254OB-C41 y ref. PID2023-146254OA-C44)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional










