• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80195

    Título
    Automatic classification of the physical surface in sound uroflowmetry using machine learning methods
    Autor
    Alvarez, Marcos Lazaro
    Arjona, Laura
    Iglesias Martínez, Miguel E.
    Bahillo Martínez, AlfonsoAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    EURASIP Journal on Audio, Speech, and Music Processing, 2024, vol. 12
    Résumé
    This work constitutes the first approach for automatically classifying the surface that the voiding flow impacts in non-invasive sound uroflowmetry tests using machine learning. Often, the voiding flow impacts the toilet walls (traditionally made of ceramic) instead of the water in the toilet. This may cause a reduction in the strength of the recorded audio signal, leading to a decrease in the amplitude of the extracted envelope. As a result, just from analysing the envelope, it is impossible to tell if that reduction in the envelope amplitude is due to a reduction in the voiding flow or an impact on the toilet wall. In this work, we study the classification of sound uroflowmetry data in male subjects depending on the surface that the urine impacts within the toilet: the three classes are water, ceramic and silence (where silence refers to an interruption of the voiding flow). We explore three frequency bands to study the feasibility of removing the human-speech band (below 8 kHz) to preserve user privacy. Regarding the classification task, three machine learning algorithms were evaluated: the support vector machine, random forest and k-nearest neighbours. These algorithms obtained accuracies of 96%, 99.46% and 99.05%, respectively. The algorithms were trained on a novel dataset consisting of audio signals recorded in four standard Spanish toilets. The dataset consists of 6481 1-s audio signals labelled as silence, voiding on ceramics and voiding on water. The obtained results represent a step forward in evaluating sound uroflowmetry tests without requiring patients to always aim the voiding flow at the water. We open the door for future studies that attempt to estimate the flow parameters and reconstruct the signal envelope based on the surface that the urine hits in the toilet.
    Palabras Clave
    Sound uroflowmetry
    Machine learning
    Automatic classification
    Surface automatic classification
    Acoustic voiding signals
    ISSN
    1687-4722
    Revisión por pares
    SI
    DOI
    10.1186/S13636-024-00332-Y
    Patrocinador
    Ministerio de Ciencia e Innovación bajo el proyecto Peace of Mind (ref. PID2019-105470RB-C31)
    El trabajo de Miguel E. Iglesias Martínez fue financiado por las 'Ayudas para la recualificación del sistema universitario español 2021-2023' en la modalidad Margarita Salas, convocadas por el Ministerio de Universidades y financiadas por los fondos europeos Next Generation EU a través del Plan de Recuperación, Transformación y Resiliencia
    Version del Editor
    https://link.springer.com/article/10.1186/s13636-024-00332-y#citeas
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80195
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [391]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Automatic classification of the physical surface in sound uroflowmetry using machine learning methods.pdf
    Tamaño:
    2.154Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10