Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80195
Título
Automatic classification of the physical surface in sound uroflowmetry using machine learning methods
Año del Documento
2024
Editorial
Springer Nature
Descripción
Producción Científica
Documento Fuente
EURASIP Journal on Audio, Speech, and Music Processing, 2024, vol. 12
Résumé
This work constitutes the first approach for automatically classifying the surface that the voiding flow impacts in non-invasive sound uroflowmetry tests using machine learning. Often, the voiding flow impacts the toilet walls (traditionally made of ceramic) instead of the water in the toilet. This may cause a reduction in the strength of the recorded audio signal, leading to a decrease in the amplitude of the extracted envelope. As a result, just from analysing the envelope, it is impossible to tell if that reduction in the envelope amplitude is due to a reduction in the voiding flow or an impact on the toilet wall. In this work, we study the classification of sound uroflowmetry data in male subjects depending on the surface that the urine impacts within the toilet: the three classes are water, ceramic and silence (where silence refers to an interruption of the voiding flow). We explore three frequency bands to study the feasibility of removing the human-speech band (below 8 kHz) to preserve user privacy. Regarding the classification task, three machine learning algorithms were evaluated: the support vector machine, random forest and k-nearest neighbours. These algorithms obtained accuracies of 96%, 99.46% and 99.05%, respectively. The algorithms were trained on a novel dataset consisting of audio signals recorded in four standard Spanish toilets. The dataset consists of 6481 1-s audio signals labelled as silence, voiding on ceramics and voiding on water. The obtained results represent a step forward in evaluating sound uroflowmetry tests without requiring patients to always aim the voiding flow at the water. We open the door for future studies that attempt to estimate the flow parameters and reconstruct the signal envelope based on the surface that the urine hits in the toilet.
Palabras Clave
Sound uroflowmetry
Machine learning
Automatic classification
Surface automatic classification
Acoustic voiding signals
ISSN
1687-4722
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación bajo el proyecto Peace of Mind (ref. PID2019-105470RB-C31)
El trabajo de Miguel E. Iglesias Martínez fue financiado por las 'Ayudas para la recualificación del sistema universitario español 2021-2023' en la modalidad Margarita Salas, convocadas por el Ministerio de Universidades y financiadas por los fondos europeos Next Generation EU a través del Plan de Recuperación, Transformación y Resiliencia
El trabajo de Miguel E. Iglesias Martínez fue financiado por las 'Ayudas para la recualificación del sistema universitario español 2021-2023' en la modalidad Margarita Salas, convocadas por el Ministerio de Universidades y financiadas por los fondos europeos Next Generation EU a través del Plan de Recuperación, Transformación y Resiliencia
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Tamaño:
2.154Mo
Formato:
Adobe PDF
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional










