Mostrar el registro sencillo del ítem

dc.contributor.authorVaquerizo-Villar, Fernando
dc.contributor.authorÁlvarez, Daniel
dc.contributor.authorKheirandish-Gozal, Leila
dc.contributor.authorGutiérrez-Tobal, Gonzalo C
dc.contributor.authorBarroso-García, Verónica
dc.contributor.authorCrespo, Andrea
dc.contributor.authordel Campo, Félix
dc.contributor.authorGozal, David
dc.contributor.authorHornero, Roberto
dc.date.accessioned2025-12-04T10:39:32Z
dc.date.available2025-12-04T10:39:32Z
dc.date.issued2018-11-13
dc.identifier.citationPhysiological Measurement, Noviembre 2018, vol. 39, p. 114006es
dc.identifier.issn0967-3334es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80300
dc.descriptionProducción Científicaes
dc.description.abstractObjective: To evaluate whether detrended fluctuation analysis (DFA) provides information that improves the diagnostic ability of the oximetry signal in the diagnosis of paediatric sleep apnoea–hypopnoea syndrome (SAHS). Approach: A database composed of 981 blood oxygen saturation (SpO2) recordings in children was used to extract DFA-derived features in order to quantify the scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desaturation index (ODI3) was also computed for each subject. Fast correlation-based filter (FCBF) was then applied to select an optimum subset of relevant and non-redundant features. This subset fed a multi-layer perceptron (MLP) neural network to estimate the apnoea–hypopnoea index (AHI). Main results: ODI3 and four features from the DFA reached significant differences associated with the severity of SAHS. An optimum subset composed of the slope in the first scaling region of the DFA profile and the ODI3 was selected using FCBF applied to the training set (60% of samples). The MLP model trained with this feature subset showed good agreement with the actual AHI, reaching an intra-class correlation coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high diagnostic ability, reaching an accuracy of 82.7%, 81.9%, and 91.1% using three common AHI cut-offs of 1, 5, and 10 events per hour (e h−1), respectively. These results outperformed the overall performance of ODI3. Significance: DFA may serve as a reliable tool to improve the diagnostic performance of oximetry recordings in the evaluation of paediatric patients with symptoms suggestive of SAHS.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherInstitute of Physics and Engineering in Medicinees
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationblood oxygen saturation (SpO2)es
dc.subject.classificationdetrended fluctuation analysis (DFA)es
dc.subject.classificationfeature selectiones
dc.subject.classificationoximetryes
dc.subject.classificationpaediatric sleep apnoea–hypopnoea syndrome (SAHS)es
dc.subject.classificationapnoea–hypopnoea index (AHI) estimationes
dc.titleDetrended fluctuation analysis of the oximetry signal to assist in paediatric sleep apnoea–hypopnoea syndrome diagnosises
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 Institute of Physics and Engineering in Medicinees
dc.identifier.doi10.1088/1361-6579/aae66aes
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1361-6579/aae66aes
dc.identifier.publicationfirstpage114006es
dc.identifier.publicationissue11es
dc.identifier.publicationtitlePhysiological Measurementes
dc.identifier.publicationvolume39es
dc.peerreviewedSIes
dc.description.projectThis work was supported by the ‘Ministerio de Ciencia, Innovación y Universidades’ and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R and RTC-2015-3446-1, and by the ‘European Commission’ and ‘FEDER’ under project ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ (‘Cooperation Pro- gramme Interreg V-A Spain-Portugal POCTEP 2014–2020’). F Vaquerizo-Villar was in receipt of a ‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’ grant from the Ministerio de Educación, Cultura y Deporte (FPU16/02938). V Barroso-García was in a receipt of a ‘Ayuda para financiar la contratación predoctoral de personal investigador’ grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund. D Álvarez was in receipt of a Juan de la Cierva grant from MINECO (IJCI-2014-22664). L Kheirandish-Gozal and D Gozal were supported by the National Institutes of Health (NIH) grant HL130984.es
dc.identifier.essn1361-6579es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco3314 Tecnología Médicaes
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem