• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80300

    Título
    Detrended fluctuation analysis of the oximetry signal to assist in paediatric sleep apnoea–hypopnoea syndrome diagnosis
    Autor
    Vaquerizo-Villar, Fernando
    Álvarez, Daniel
    Kheirandish-Gozal, Leila
    Gutiérrez-Tobal, Gonzalo C
    Barroso-García, Verónica
    Crespo, Andrea
    del Campo, Félix
    Gozal, David
    Hornero, Roberto
    Año del Documento
    2018-11-13
    Editorial
    Institute of Physics and Engineering in Medicine
    Descripción
    Producción Científica
    Documento Fuente
    Physiological Measurement, Noviembre 2018, vol. 39, p. 114006
    Resumen
    Objective: To evaluate whether detrended fluctuation analysis (DFA) provides information that improves the diagnostic ability of the oximetry signal in the diagnosis of paediatric sleep apnoea–hypopnoea syndrome (SAHS). Approach: A database composed of 981 blood oxygen saturation (SpO2) recordings in children was used to extract DFA-derived features in order to quantify the scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desaturation index (ODI3) was also computed for each subject. Fast correlation-based filter (FCBF) was then applied to select an optimum subset of relevant and non-redundant features. This subset fed a multi-layer perceptron (MLP) neural network to estimate the apnoea–hypopnoea index (AHI). Main results: ODI3 and four features from the DFA reached significant differences associated with the severity of SAHS. An optimum subset composed of the slope in the first scaling region of the DFA profile and the ODI3 was selected using FCBF applied to the training set (60% of samples). The MLP model trained with this feature subset showed good agreement with the actual AHI, reaching an intra-class correlation coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high diagnostic ability, reaching an accuracy of 82.7%, 81.9%, and 91.1% using three common AHI cut-offs of 1, 5, and 10 events per hour (e h−1), respectively. These results outperformed the overall performance of ODI3. Significance: DFA may serve as a reliable tool to improve the diagnostic performance of oximetry recordings in the evaluation of paediatric patients with symptoms suggestive of SAHS.
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    3314 Tecnología Médica
    1203.04 Inteligencia Artificial
    Palabras Clave
    blood oxygen saturation (SpO2)
    detrended fluctuation analysis (DFA)
    feature selection
    oximetry
    paediatric sleep apnoea–hypopnoea syndrome (SAHS)
    apnoea–hypopnoea index (AHI) estimation
    ISSN
    0967-3334
    Revisión por pares
    SI
    DOI
    10.1088/1361-6579/aae66a
    Patrocinador
    This work was supported by the ‘Ministerio de Ciencia, Innovación y Universidades’ and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R and RTC-2015-3446-1, and by the ‘European Commission’ and ‘FEDER’ under project ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ (‘Cooperation Pro- gramme Interreg V-A Spain-Portugal POCTEP 2014–2020’). F Vaquerizo-Villar was in receipt of a ‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’ grant from the Ministerio de Educación, Cultura y Deporte (FPU16/02938). V Barroso-García was in a receipt of a ‘Ayuda para financiar la contratación predoctoral de personal investigador’ grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund. D Álvarez was in receipt of a Juan de la Cierva grant from MINECO (IJCI-2014-22664). L Kheirandish-Gozal and D Gozal were supported by the National Institutes of Health (NIH) grant HL130984.
    Version del Editor
    https://iopscience.iop.org/article/10.1088/1361-6579/aae66a
    Propietario de los Derechos
    © 2018 Institute of Physics and Engineering in Medicine
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80300
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [55]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    PM_Vaquerizo2018_R1.pdf
    Tamaño:
    1.378Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10