Mostrar el registro sencillo del ítem
| dc.contributor.author | Vaquerizo-Villar, Fernando | |
| dc.contributor.author | Gutiérrez-Tobal, Gonzalo C. | |
| dc.contributor.author | Calvo, Eva | |
| dc.contributor.author | Álvarez, Daniel | |
| dc.contributor.author | Kheirandish-Gozal, Leila | |
| dc.contributor.author | del Campo, Félix | |
| dc.contributor.author | Gozal, David | |
| dc.contributor.author | Hornero, Roberto | |
| dc.date.accessioned | 2025-12-04T11:36:50Z | |
| dc.date.available | 2025-12-04T11:36:50Z | |
| dc.date.issued | 2023-10 | |
| dc.identifier.citation | Computers in Biology and Medicine, Octubre 2023, vol. 165, p. 107419 | es |
| dc.identifier.issn | 0010-4825 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/80304 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | spa | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.subject.classification | Electroencephalogram (EEG) | es |
| dc.subject.classification | Deep learning | es |
| dc.subject.classification | Explainable artificial intelligence (XAI) | es |
| dc.subject.classification | Gradient-weighted class activation mapping (Grad-CAM) | es |
| dc.subject.classification | Pediatric obstructive sleep apnea (OSA) | es |
| dc.subject.classification | Sleep staging | es |
| dc.title | An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). | es |
| dc.identifier.doi | 10.1016/j.compbiomed.2023.107419 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0010482523008843?via%3Dihub | es |
| dc.identifier.publicationfirstpage | 107419 | es |
| dc.identifier.publicationtitle | Computers in Biology and Medicine | es |
| dc.identifier.publicationvolume | 165 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | This work was supported by ‘Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/10.13039/501100011033/‘, ERDF A way of making Europe, and NextGenerationEU/PRTR under projects PID2020-115468RB-I00 and PDC2021-120775-I00, by ‘Sociedad Española de Neumología y Cirugía Torácica (SEPAR)’ under project 649/2018, ‘Sociedad Española de Sueño (SES)’ under project “Beca de Investigación SES 2019”, and by ‘CIBER -Consorcio Centro de Investigación Biomédica en Red-’ (CB19/01/00012) through ‘Instituto de Salud Carlos III’, as well as under the project Tattoo4Sleep from 2022 CIBER-BBN Early Stage Plus call. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). G. C. Gutiérrez-Tobal was supported by a post-doctoral grant from the University of Valladolid. D. Álvarez is supported by a “Ramón y Cajal” grant (RYC2019-028566-I) from the ‘Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación’ co-funded by the European Social Fund. L. Kheirandish-Gozal and D. Gozal are supported by the Leda J. Sears Foundation for Pediatric Research. | es |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 3314 Tecnología Médica | es |
| dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | es |
| dc.subject.unesco | 1203.04 Inteligencia Artificial | es |



