| dc.contributor.author | Shafana Farveen, M. | |
| dc.contributor.author | Muñoz Torre, Raúl | |
| dc.contributor.author | Narayanan, Rajnish | |
| dc.contributor.author | García Depraect, Octavio | |
| dc.date.accessioned | 2025-12-16T09:59:45Z | |
| dc.date.available | 2025-12-16T09:59:45Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Bioresource Technology Reports, 2025, vol. 32, p. 102424 | es |
| dc.identifier.issn | 2589-014X | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/80649 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | This study investigates the anaerobic degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)
using shotgun metagenomics and molecular docking to analyze temporal shifts in microbial communities and key
enzymes under batch and semi-batch conditions. Comparative analysis of the microbial communities revealed a
decline in generalist taxa and an increased contribution of Bacteroidota, Chloroflexota, and methanogenic
Euryarchaeota. KEGG-annotations suggested that modules affiliated with depolymerases, esterases, β-oxidation
and methanogenic pathways would be co-activated. Furthermore, PlasticDB-based computational analysis evi-
denced a stepwise enrichment of PHB- and PHA-related enzymes, which confirmed the substrate-mediated mi-
crobial specialization. A prominent metagenomic depolymerase (R1_379815) showed well-conserved catalytic
residues (Ser134, His284, Asp211) and a substrate-binding affinity comparable to the native counterpart 9BYU,
confirming its substrate preference and functional identity with previously reported PHB depolymerases.
Collectively, this integrative metagenomic and computational approach provides mechanistic insights into PHBH
biodegradation under anaerobic conditions, aiding in the identification of potential target enzymes for enhancing
plastic degradability and methane recovery in anaerobic digestion systems. These findings contribute to the
advancement of sustainable bioplastic waste management through process-level and enzymatic optimization. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
| dc.subject.classification | Anaerobic digestion | es |
| dc.subject.classification | Bioplastic | es |
| dc.subject.classification | Molecular docking | es |
| dc.subject.classification | PHBH | es |
| dc.subject.classification | Shotgun metagenomics | es |
| dc.title | Functional specialization and enzymatic mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) degradation in anaerobic digesters: Insights from shotgun metagenomics and molecular modeling | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2025 The Author(s) | es |
| dc.identifier.doi | 10.1016/j.biteb.2025.102424 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2589014X25004074 | es |
| dc.identifier.publicationfirstpage | 102424 | es |
| dc.identifier.publicationtitle | Bioresource Technology Reports | es |
| dc.identifier.publicationvolume | 32 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | This work was supported by funding from the European Union's NextGeneration EU/PRTR and the MCIN/AEI/10.13039/501100011033 under Grant RYC2021-034559-I | es |
| dc.description.project | Junta de Castilla y León (Consejería de Educación) y la cofinanciación de la Unión Europea a través del Fondo Europeo de Desarrollo Regional (FEDER) (Referencias: CLU-2025-2-06, UIC 393) | es |
| dc.rights | Atribución-NoComercial 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 3308 Ingeniería y Tecnología del Medio Ambiente | es |