Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81364
Título
On the Stability of the RK-FDTD Method for Graphene Modeling
Año del Documento
2025
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Descripción
Producción Científica
Documento Fuente
IEEE Transactions on Antennas and Propagation, Octubre 2025, vol. 73, n.10, p. 8238-8241.
Resumen
The Runge–Kutta finite-difference time-domain (RK
FDTD) method is an extension of the conventional finite-difference
time-domain (FDTD) technique to include graphene sheets. According to
this method, the relationship between the current density and the electric
field for graphene is discretizedby applying an explicit second-order
Runge–Kutta(RK) scheme. It has recently been concluded that the RK-FDTD method is subject to the same Courant–Friedrichs–Lewy (CFL)
stability limit as the conventional FDTD method. This communication
revisits the stability analysis of the RK-FDTD method. To this end, the von
Neumann method is combined with the Routh–Hurwitz (RH) criterion.
As a result, closed-form stability conditions are obtained. It is shown
that in addition to the CFL stability limit, the RK-FDTD method must
also satisfy new conditions involving graphene parameters. Unfortunately,
the RK-FDTD method becomes unstable for commonly used values of
these parameters. The theoretical results are confirmed with numerical
examples.
Palabras Clave
Finite-difference time-domain (FD-TD) method
Second-orderRunge–Kutta(RK) scheme
FDTD stability
Graphene
ISSN
0018-926X
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (PID2022-137619NB-I00)
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
402.6Kb
Formato:
Adobe PDF
Descripción:
Artículo principal
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional










