Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/18091
Título: Robust Principal Component Analysis Based On Trimming Around Affine Subspaces
Autor: Croux, Christophe
García-Escudero, Luis Angel
Gordaliza, Alfonso
Ruwet, Christel
San Martín, Roberto
Año del Documento: 2016
Resumen: Principal Component Analysis (PCA) is a widely used technique for reducing dimensionality of multivariate data. The principal component subspace is defined as the affine subspace of a given dimension d giving the best fit to the data. However, PCA suffers from a well-known lack of robustness. As a robust alternative, one can resort to an impartial trimming based approach. Here one searches for the best subsample containing a proportion 1 − α of the observations, with 0 < α < 1, and the best d-dimensional affine subspace fitting this subsample, yielding the trimmed principal component subspace. A population version will be given and existence of a solution to both the sample and population problem will be proven. Moreover, under mild conditions, the solutions of the sample problem are consistent toward the solutions of the population problem. The robustness of the method is studied by proving quantitative robustness, computing the breakdown point, and deriving the influence functions. Furthermore, asymptotic efficiencies at the normal model are derived, and finite sample efficiencies of the estimators are studied by means of a simulation study
Materias (normalizadas): Estadística
Departamento: Estadística e IO
Idioma: spa
URI: http://uvadoc.uva.es/handle/10324/18091
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP24 - Otros Documentos (Informes, Memorias, Documentos de Trabajo, etc)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
RobustPCA.pdf283,09 kBAdobe PDFThumbnail
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5