Skip navigation
Please use this identifier to cite or link to this item:
Title: Two-point one-dimensional δ-δ’ interactions: non-abelian addition law and decoupling limit
Authors: Gadella, Manuel
Mateos Guilarte, Juan
Muñoz Castañeda, J.M.
Nieto Calzada, Luis Miguel
Issue Date: 2016
Citation: J. Phys. A: Math. Theor. 49 (2016) 015204.
Abstract: In this contribution to the study of one-dimensional point potentials, we prove that if we take the limit $q\to 0$ on a potential of the type ${v}_{0}\delta (y)+2{v}_{1}{\delta }^{\prime }(y)+{w}_{0}\delta (y-q)+2{w}_{1}{\delta }^{\prime }(y-q),$ we obtain a new point potential of the type ${u}_{0}\delta (y)+2{u}_{1}{\delta }^{\prime }(y),$ when u0 and u1 are related to v0, v1, w0 and w1 by a law with the structure of a group. This is the Borel subgroup of ${{SL}}_{2}({\mathbb{R}}).$ We also obtain the non-abelian addition law from the scattering data. The spectra of the Hamiltonian in the decoupling cases emerging in the study are also described in full. It is shown that for the ${v}_{1}=\pm 1,\;$ ${w}_{1}=\pm 1$ values of the ${\delta }^{\prime }$ couplings the singular Kurasov matrices become equivalent to Dirichlet at one side of the point interaction and Robin boundary conditions at the other side.
Departament : Física Teórica, Atómica y Óptica
Sponsor: Ministerio de Economía, Industria y Competitividad (Project MTM2014-57129-C2-1-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. UIC 011)
Publisher Version:
Language: eng
Rights: info:eu-repo/semantics/openAccess
Appears in Collections:FM - Artículos de revista

Files in This Item:
File Description SizeFormat 
1505.04359.pdf578,12 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

University of Valladolid
Powered by MIT's. DSpace software, Version 5.5