Skip navigation
Por favor, use este identificador para citar o enlazar este ítem:
Título: Order Restricted Inference for Oscillatory Systems for Detecting Rhythmic Signals
Autor: Larriba, Yolanda
Rueda, Cristina
Fernández, Miguel
Peddada, Shyamal
Año del Documento: 2016
Documento Fuente: Nucleic Acids Research, 44(22): e163
Resumen: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist’s choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic.
Revisión por Pares: SI
DOI: 10.1093/nar/gkw771
Patrocinador: Spanish Ministerio de Ciencia e Innovación [MTM2015-71217-R]
Spanish Ministerio de Educación, Cultura y Deporte [FPU14/04534]
Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) [Z01 ES101744-04]
Idioma: eng
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP24 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
NAR published e163.full.pdf1,25 MBAdobe PDFThumbnail

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5