Skip navigation
Por favor, use este identificador para citar o enlazar este ítem:
Título: Influence of microarray normalization strategies and rhythmicity detection algorithms to detect circadian rhythms
Autor: Larriba González, Yolanda
Rueda Sabater, Cristina
Fernández Temprano, Miguel A.
Peddada, Shyamal D.
Congreso: 9th International Conference of the ERCIM Working Group on Computational and Methodological Statistics
Año del Documento: 2016
Resumen: High-throughput microarray technologies are a widely used research tool in gene expression analysis. A large variety of preprocessing methods for raw intensity measures is available to establish gene expression values. Normalization is the key stage in preprocessing methods, since it removes systematic variations in microarray data. Then, the choice of the normalization strategy can make a substantial impact to the final results. Additionally, we have observed that the identification of rhythmic circadian genes depends not only on the normalization strategy but also on the rhythmicity detection algorithm employed. We analyze three different rhythmicity detection algorithms. On the one hand, JTK and RAIN which are widely extended among biologists. On the other hand, ORIOS, a novel statistical methodology which heavily relies on Order Restricted Inference and that we propose to detect rhythmic signal for Oscillatory Systems. Results on the determination of circadian rhythms are compared using artificial microarray data and publicly available circadian data bases.
Idioma: eng
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP24 - Comunicaciones a congresos, conferencias, etc.

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
BoA CFE-CMStatistics 2016-45-45.pdf35,27 kBAdobe PDFThumbnail

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5