Skip navigation
Please use this identifier to cite or link to this item:
Title: Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization
Authors: Hamed Misbah, Mohamed
Santos García, María Mercedes
Quintanilla Sierra, Luis
Günter, Christina
Alonso Rodrigo, Matilde
Taubert, Andreas
Rodríguez Cabello, José Carlos
Issue Date: 2017
Publisher: Beilstein-Institut
Description: Producción Científica
Citation: Beilstein Journal of Nanotechnology, 2017, 8, pg. 772–783
Abstract: Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of advanced multifunctional materials. The generation of such multifunctional hybrid materials depends on the properties of their counterparts and the way in which they are assembled. The success of this assembly depends on the different approaches used, such as recombinant DNA technology and click chemistry. In the present work, an elastin-like recombinamer bearing lysine amino acids distributed along the recombinamer chain has been cross-linked via Huisgen [2 + 3] cycloaddition. The recombinamer contains the SNA15 peptide domains inspired by salivary statherin, a peptide epitope known to specifically bind to and nucleate calcium phosphate. The benefit of using click chemistry is that the hybrid elastin-like-statherin recombinamers cross-link without losing their fibrillar structure. Mineralization of the resulting hybrid elastin-like-statherin recombinamer hydrogels with calcium phosphate is described. Thus, two different hydroxyapatite morphologies (cauliflower- and plate-like) have been formed. Overall, this study shows that crosslinking elastin-like recombinamers leads to interesting matrix materials for the generation of calcium phosphate composites with potential applications as biomaterials.
Classification: Calcio
Peer Review: SI
DOI: 10.3762/bjnano.8.80
Sponsor: Ministerio de Economía, Industria y Competitividad (Project MAT2013- 42473-R and MAT2013-41723-R)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA244U13, VA313U14 and GRS/516/A/10)
Programme: info:eu-repo/grantAgreement/EC/H2020/642687
Publisher Version:
Language: eng
Rights: info:eu-repo/semantics/openAccess
Appears in Collections:Documentos OpenAire(Open Access Infrastructure for Research in Europe)
BIOFORGE - Artículos de revista

Files in This Item:
File Description SizeFormat 
Recombinant DNA.pdf2,29 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons

University of Valladolid
Powered by MIT's. DSpace software, Version 5.5