Mostrar el registro sencillo del ítem

dc.contributor.authorFisicaro, Giuseppe
dc.contributor.authorPelaz Montes, María Lourdes 
dc.contributor.authorLópez Martín, Pedro 
dc.contributor.authorLa Magna, Antonino
dc.date.accessioned2018-03-13T11:15:49Z
dc.date.available2018-03-13T11:15:49Z
dc.date.issued2012
dc.identifier.citationPhysical Review E, 2012, 86, 036705es
dc.identifier.issn1539-3755es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/28969
dc.descriptionProducción Científicaes
dc.description.abstractPulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationSilicones
dc.subject.classificationLaser irradiationes
dc.subject.classificationIrradicación con láseres
dc.titleKinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© American Physical Societyes
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.86.036705es
dc.relation.publisherversionhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.036705es
dc.peerreviewedSIes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/258547
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem