• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/38794

    Título
    Robust, fuzzy, and parsimonious clustering based on mixtures of Factor Analyzers
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Greselin, Francesca
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2018
    Documento Fuente
    International Journal of Approximate Reasoning (2018), Vol. 94, 60–75
    Resumen
    A clustering algorithm that combines the advantages of fuzzy clustering and robust statistical estimators is presented. It is based on mixtures of Factor Analyzers, endowed by the joint usage of trimming and the constrained estimation of scatter matrices, in a modified maximum likelihood approach. The algorithm generates a set of membership values, that are used to fuzzy partition the data set and to contribute to the robust estimates of the mixture parameters. The adoption of clusters modeled by Gaussian Factor Analysis allows for dimension reduction and for discovering local linear structures in the data. The new methodology has been shown to be resistant to different types of contamination, by applying it on artificial data. A brief discussion on the tuning parameters, such as the trimming level, the fuzzifier parameter, the number of clusters and the value of the scatter matrices constraint, has been developed, also with the help of some heuristic tools for their choice. Finally, a real data set has been analyzed, to show how intermediate membership values are estimated for observations lying at cluster overlap, while cluster cores are composed by observations that are assigned to a cluster in a crisp way.
    Revisión por pares
    SI
    DOI
    10.1016/j.ijar.2018.01.001
    Patrocinador
    Ministerio de Economía y Competitividad grant MTM2017-86061-C2-1-P, y Consejería de Educación de la Junta de Castilla y León and FEDER grantVA005P17 y VA002G18
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/38794
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [77]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    rob_fuzzy_MFA_repos.pdf
    Tamaño:
    820.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10