• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24845

    Título
    Predicting Peer-Review Participation at Large Scale Using an Ensemble Learning Method
    Autor
    Er, ErkanAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Congreso
    LASI: Learning Analytics Summer Institute & Summer School (2017. Madrid)
    Año del Documento
    2017
    Editorial
    CEUR Workshop Proceedings
    Descripción
    Producción Científica
    Documento Fuente
    Er, E., Gómez-Sánchez, E., Bote-Lorenzo, M.L., Dimitriadis, Y., Asensio-Pérez, J.I. Predicting Peer-Review Participation at Large Scale Using an Ensemble Learning Method. Proceedings of the Learning Analytics Summer Institute Spain 2017, Madrid, Spain, July 2017.
    Resumen
    Peer review has been an effective approach for the assessment of mas-sive numbers of student artefacts in MOOCs. However, low student participation is a barrier that can result in inefficiencies in the implementation of peer reviews, disrupting student learning. In this regard, knowing earlier the estimate number of peer works that students will review may bring numerous pedagogical utilities in MOOCs. Previously, we have attempted to predict student participation in peer review in a MOOC context. Building on our previous work, in this study we pro-pose an ensemble learning approach with a refined set of features. Results show that the prediction performance improves when a preceding classification model is trained to identify students with no peer-review participation and that the re-fined features were effective with more transferability to other contexts.
    Palabras Clave
    MOOC
    Revisión por pares
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16)
    SNOLA (TIN2015-71669-REDT)
    Version del Editor
    http://ceur-ws.org/
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/24845
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Predicting-LASI-2017-peer-reviews-ensembling-final_r2.pdf
    Tamaño:
    701.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10