Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/24845
Título: Predicting Peer-Review Participation at Large Scale Using an Ensemble Learning Method
Autor: Er, Erkan
Gómez Sánchez, Eduardo
Bote Lorenzo, Miguel L.
Dimitriadis, Yannis A.
Asensio Pérez, Juan Ignacio
Congreso: LASI: Learning Analytics Summer Institute & Summer School (2017. Madrid)
Año del Documento: 2017
Editorial: CEUR Workshop Proceedings
Descripción: Producción Científica
Documento Fuente: Er, E., Gómez-Sánchez, E., Bote-Lorenzo, M.L., Dimitriadis, Y., Asensio-Pérez, J.I. Predicting Peer-Review Participation at Large Scale Using an Ensemble Learning Method. Proceedings of the Learning Analytics Summer Institute Spain 2017, Madrid, Spain, July 2017.
Resumen: Peer review has been an effective approach for the assessment of mas-sive numbers of student artefacts in MOOCs. However, low student participation is a barrier that can result in inefficiencies in the implementation of peer reviews, disrupting student learning. In this regard, knowing earlier the estimate number of peer works that students will review may bring numerous pedagogical utilities in MOOCs. Previously, we have attempted to predict student participation in peer review in a MOOC context. Building on our previous work, in this study we pro-pose an ensemble learning approach with a refined set of features. Results show that the prediction performance improves when a preceding classification model is trained to identify students with no peer-review participation and that the re-fined features were effective with more transferability to other contexts.
Palabras Clave: MOOC
Revisión por pares
Patrocinador: Ministerio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16)
SNOLA (TIN2015-71669-REDT)
Version del Editor: http://ceur-ws.org/
https://lasi17.snola.es/
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/24845
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP71 - Comunicaciones a congresos, conferencias, etc.

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Predicting-LASI-2017-peer-reviews-ensembling-final_r2.pdf701,35 kBAdobe PDFThumbnail
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5