Show simple item record

dc.contributor.authorVaquerizo Martín, Luis
dc.contributor.authorAbad Fernández, Nerea
dc.contributor.authorMato Chaín, Rafael Bartolomé 
dc.contributor.authorCocero Alonso, María José 
dc.date.accessioned2018-09-04T11:22:51Z
dc.date.available2018-09-04T11:22:51Z
dc.date.issued2018
dc.identifier.citationChemical Engineering Journal 350, 2018, 463-473es
dc.identifier.issn1385-8947es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/31390
dc.descriptionProducción Científicaes
dc.description.abstractConventional kinetic models of cellulose hydrolysis in supercritical water do not accurately represent the operation with concentrated suspensions since they neglect the mass transfer effects. This work proposes a kinetic model which is able to reproduce cellulose hydrolysis at high concentrations providing the opt imum reaction conditions to obtain nanocellulose particles and oligomers of controlled size. The basic idea of the model, which is applicable to other lignocellulosic materials, is that the hydrolysis of the cellulose particles generates an oligosaccharides layer which creates a mass transfer resistance. Therefore, it considers both the diffusion of the water molecules from the bulk phase to the surfaces of the cellulose particles and the superficial hydrolysis kinetics. Experimental points were obtained working with two different cellulose types (Dp=75 μm and Dp=50 μm) at 390 °C and 25 MPa, residence times between 50 ms and 250 ms and initial cellulose suspension concentration from 3% to 7% w/w (1% to 2.3% w/w at the inlet of the reactor). The average deviation between the experimental points and the theoretical values is lower than 10% proving the applicability of the kinetic model. The experimental and theoretical results demonstrated that increasing the total number of cellulose particles, either increasing the initial concentration or decreasing the average particle diameter, reduces the hydrolysis rate.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.classificationMass transferes
dc.subject.classificationShrinking Core Modeles
dc.subject.classificationparticle surfacees
dc.subject.classificationoligosaccharides layeres
dc.subject.classificationcovering conversiones
dc.titleRedefining conventional biomass hydrolysis models by including mass transfer effects. Kinetic model of cellulose hydrolysis in supercritical wateres
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.cej.2018.05.077es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S138589471830891X
dc.identifier.publicationfirstpage463es
dc.identifier.publicationissue350es
dc.identifier.publicationlastpage473es
dc.identifier.publicationtitleChemical Engineering Journales
dc.peerreviewedSIes
dc.rightsAttribution 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record