• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33635

    Título
    Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Autor
    Ballesteros Castañeda, ÁngelAutoridad UVA
    Marrero, Juan C.
    Ravanpak, Zohreh
    Año del Documento
    2017
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 145204 (25pp)
    Zusammenfassung
    Given a Lie-Poisson completely integrable bi-Hamiltonian system on R^n, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial Lie-Poisson system on a non-abelian Poisson-Lie group G_eta of dimension n, where eta \in R is the deformation parameter. Moreover, we show that from the two multiplicative (Poisson-Lie) Hamiltonian structures on G_eta that underly the dynamics of the deformed system and by making use of the group law on G_eta, one may obtain two completely integrable Hamiltonian systems on G_eta x G_eta. By construction, both systems admit reduction, via the multiplication in G_eta, to the deformed bi-Hamiltonian system in G_eta. The previous approach is applied to two relevant Lie-Poisson completely integrable bi-Hamiltonian systems: the Lorenz and Euler top systems.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33635
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    1609.07438.pdf
    Tamaño:
    3.364Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10